2186: [Sdoi2008]沙拉公主的困惑

Description

  大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票。房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的数量。现在,请你帮助沙拉公主解决这个问题,由于可能张数非常大,你只需计算出对R取模后的答案即可。R是一个质数。

Input

第一行为两个整数T,R。R<=10^9+10,T<=10000,表示该组中测试数据数目,R为模后面T行,每行一对整数N,M,见题目描述 m<=n

Output

共T行,对于每一对N,M,输出1至N!中与M!素质的数的数量对R取模后的值

Sample Input

1 11
4 2

Sample Output

1

数据范围:
对于100%的数据,1 < = N , M < = 10000000

HINT

Source

【分析】

  本来做这题是找信心,然而。。

  首先我们知道 如果x与y互质,那么x+y与y也互质。

  所以只需要求$\phi(m!)* \dfrac{n!}{m!} $

  问题转换成求$\phi(m!)$

  我们知道一种求法,就是把$m!$分解质因数,对于每个素数乘上一个$\dfrac{p-1}{p}$

  显然<=m的素数就是$m!$的分解质因数。

  中间要用到的线性求逆元:

  ny[1]=1;

  for(int i=2;i<=Maxn-10;i++) ny[i]=(R-R/i*ny[R%i])%R;

  

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Maxn 10000010
#define LL long long int R; int mul(int x,int y)
{
LL K1=(LL)x,K2=(LL)y;
K1=(K1*K2)%R;
return (int)K1;
} int pri[Maxn],pl;
int ny[Maxn];
bool vis[Maxn];
void init()
{
for(int i=;i<=Maxn-;i++)
{
if(!vis[i]) pri[++pl]=i;
for(int j=;j<=pl;j++)
{
LL K1=(LL)i,K2=(LL)pri[j];
K1=K1*K2;
if(K1>Maxn) break;
vis[K1]=;
if(i%pri[j]==) break;
}
}
} int A[Maxn],B[Maxn];
void get_ans()
{
A[]=;
for(int i=;i<=Maxn-;i++)
{
A[i]=mul(A[i-],i);
}
int now=;
B[]=;
for(int i=;i<=Maxn-;i++)
{
B[i]=B[i-];
while(pri[now]<=i&&now<=pl)
{
B[i]=mul(mul(pri[now]-,ny[pri[now]]),B[i]);
// B[i]=((B[i]*(pri[now]-1)%R)%R)*ny[pri[now]];
// B[i]%=R;
now++;
if(now==pl) break;
}
}
} int main()
{
int T;
scanf("%d%d",&T,&R);
// memset(vis,0,sizeof(vis));
for(int i=;i<=Maxn-;i++) vis[i]=;
init();
ny[]=;
for(int i=;i<=Maxn-;i++) ny[i]=mul(R-R/i,ny[R%i]); get_ans();
while(T--)
{
int n,m;
scanf("%d%d",&n,&m);
int ans=mul(A[n],B[m]);
printf("%d\n",ans);
}
return ;
}

这道恶心题又卡空间 又卡时间。

2017-02-13 13:48:22

【BZOJ 2186】 2186: [Sdoi2008]沙拉公主的困惑 (欧拉筛,线性求逆元)的更多相关文章

  1. 【bzoj2186】[Sdoi2008]沙拉公主的困惑 欧拉函数

    题目描述 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的 ...

  2. [BZOJ 2186][Sdoi2008]沙拉公主的困惑(欧拉函数)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2186 分析: 就是要求1~n!中与m!互质的数的个数 首先m!以内的就是φ(m!) 关 ...

  3. bzoj 2186 [Sdoi2008]沙拉公主的困惑 欧拉函数

    n>=m,所以就变成了求 ϕ(m!)∗n!/m! 而 ϕ(m!)=m!∗(p−1)/p...... p为m!的素因子,即为m内的所有素数,问题就转化为了求 n!∗(p−1)/p...... 只需 ...

  4. Bzoj 2186: [Sdoi2008]沙拉公主的困惑 乘法逆元,线性筛,欧拉函数,数论

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2560  Solved: 857[Submit][St ...

  5. 数学(逆元):BZOJ 2186: [Sdoi2008]沙拉公主的困惑

    2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...

  6. 洛谷 P2155 BZOJ 2186 codevs 2301 [SDOI2008]沙拉公主的困惑

    题目描述 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的 ...

  7. BZOJ 2186 沙拉公主的困惑

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MB Submit: 3397  Solved: 1164 [Submit] ...

  8. 【bzoj2186】[Sdoi2008]沙拉公主的困惑

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 3303  Solved: 1129[Submit][S ...

  9. BZOJ2186: [Sdoi2008]沙拉公主的困惑(求[1,N!]与M!互素的个数)(线性筛)

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 6103  Solved: 2060[Submit][S ...

随机推荐

  1. 【BZOJ】3566: [SHOI2014]概率充电器

    [算法]树型DP+期望DP [题意]一棵树上每个点均有直接充电概率qi%,每条边有导电概率pi%,问期望有多少结点处于充电状态? [题解]引用自:[BZOJ3566][SHOI2014]概率充电器 树 ...

  2. DotNet 学习笔记 OWIN

    Open Web Interface for .NET (OWIN) ----------------------------------------------------------------- ...

  3. bzoj 1058 bst

    因为是数列的维护,所以我们可以考虑用splay来维护,每次在x插入的时候就在x+1前面插入就行了,然后用bst来维护两问的答案,但是应该会tle.我们来考虑这个问题的性质,首先因为这个数列没有删除操作 ...

  4. js_判断当前页面是否有网络和网络连接超时

    2018-04-12 方法一:通过navigator.onLine属性判断,返回true为有联网状态,false为断网状态. //方法一 if(navigator.onLine) { console. ...

  5. Windows下基于python3使用word2vec训练中文维基百科语料(二)

    在上一篇对中文维基百科语料处理将其转换成.txt的文本文档的基础上,我们要将为文本转换成向量,首先都要对文本进行预处理 步骤四:由于得到的中文维基百科中有许多繁体字,所以我们现在就是将繁体字转换成简体 ...

  6. linux驱动基础系列--Linux 串口、usb转串口驱动分析

    前言 主要是想对Linux 串口.usb转串口驱动框架有一个整体的把控,因此会忽略某些细节,同时里面涉及到的一些驱动基础,比如字符设备驱动.平台驱动等也不进行详细说明原理.如果有任何错误地方,请指出, ...

  7. ACE_Reactor类

    .ACE反应器框架简介 反应器(Reactor):用于事件多路分离和分派的体系结构模式 对一个文件描述符指定的文件或设备的操作, 有两种工作方式: 阻塞与非阻塞. 在设计服务端程序时,如果采用阻塞模式 ...

  8. golang-指针,函数,map

    指针 普通类型变量存的就是值,也叫值类型.指针类型存的是地址,即指针的值是一个变量的地址.一个指针只是值所保存的位置,不是所有的值都有地址,但是所有的变量都有.使用指针可以在无需知道变量名字的情况下, ...

  9. 基于flask和百度AI接口实现前后端的语音交互

    话不多说,直接怼代码,有不懂的,可以留言 简单的实现,前后端的语音交互. import os from uuid import uuid4 from aip import AipSpeech from ...

  10. react表单提交

    class FlavorForm extends React.Component { constructor(props) { super(props); this.state = {value: ' ...