Weka算法介绍
RWeka (http://cran.r-project.org/web/packages/RWeka/index.html) :
1) 数据输入和输出
WOW():查看Weka函数的参数。
Weka_control():设置Weka函数的参数。
read.arff():读Weka Attribute-Relation File Format (ARFF)格式的数据。
write.arff:将数据写入Weka Attribute-Relation File Format (ARFF)格式的文件。
2) 数据预处理
Normalize():无监督的标准化连续性数据。
Discretize():用MDL(Minimum Description Length)方法,有监督的离散化连续性数值数据。
3) 分类和回归
IBk():k最近邻分类
LBR():naive Bayes法分类
J48():C4.5决策树算法(决策树在分析各个属性时,是完全独立的)。
LMT():组合树结构和Logistic回归模型,每个叶子节点是一个Logistic回归模型,准确性比单独的决策树和Logistic回归方法要好。
M5P():M5 模型数算法,组合了树结构和线性回归模型,每个叶子节点是一个线性回归模型,因而可用于连续数据的回归。
DecisionStump():单层决策树算法,常被作为boosting的基本学习器。
SMO():支持向量机分类
AdaBoostM1():Adaboost M1方法。-W参数指定弱学习器的算法。
Bagging():通过从原始数据取样(用替换方法),创建多个模型。
LogitBoost():弱学习器采用了对数回归方法,学习到的是实数值
MultiBoostAB():AdaBoost 方法的改进,可看作AdaBoost 和 “wagging”的组合。
Stacking():用于不同的基本分类器集成的算法。
LinearRegression():建立合适的线性回归模型。
Logistic():建立logistic回归模型。
JRip():一种规则学习方法。
M5Rules():用M5方法产生回归问题的决策规则。
OneR():简单的1-R分类法。
PART():产生PART决策规则。
4) 聚类
Cobweb():这是种基于模型方法,它假设每个聚类的模型并发现适合相应模型的数据。不适合对大数据库进行聚类处理。
FarthestFirst():快速的近似的k均值聚类算法
SimpleKMeans():k均值聚类算法
XMeans():改进的k均值法,能自动决定类别数
DBScan():基于密度的聚类方法,它根据对象周围的密度不断增长聚类。它能从含有噪声的空间数据库中发现任意形状的聚类。此方法将一个聚类定义为一组“密度连接”的点集。
5)关联规则
Apriori():Apriori是关联规则领域里最具影响力的基础算法,是一种广度优先算法,通过多次扫描数据库来获取支持度大于最小支持度的频繁项集。它的理论基础是频繁项集的两个单调性原则:频繁项集的任一子集一定是频繁的;非频繁项集的任一超集一定是非频繁的。在海量数据的情况下,Apriori 算法的时间和空间成本非常高。
Tertius():Tertius算法。
6)预测和评估:
predict():根据分类或聚类结果预测新数据的类别
table():比较两个因子对象
evaluate_Weka_classifier():评估模型的执行,如:TP Rate,FP Rate,Precision,Recall,F-Measure。
---- 整理自http://maya.cs.depaul.edu/~classes/ect584/WEKA/classify.html
Weka算法介绍的更多相关文章
- 【原创】机器学习之PageRank算法应用与C#实现(1)算法介绍
考虑到知识的复杂性,连续性,将本算法及应用分为3篇文章,请关注,将在本月逐步发表. 1.机器学习之PageRank算法应用与C#实现(1)算法介绍 2.机器学习之PageRank算法应用与C#实现(2 ...
- KNN算法介绍
KNN算法全名为k-Nearest Neighbor,就是K最近邻的意思. 算法描述 KNN是一种分类算法,其基本思想是采用测量不同特征值之间的距离方法进行分类. 算法过程如下: 1.准备样本数据集( ...
- ISP基本框架及算法介绍
什么是ISP,他的工作原理是怎样的? ISP是Image Signal Processor的缩写,全称是影像处理器.在相机成像的整个环节中,它负责接收感光元件(Sensor)的原始信号数据,可以理解为 ...
- Python之常见算法介绍
一.算法介绍 1. 算法是什么 算法是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制.也就是说,能够对一定规范的输入,在有限时间内获得所要求的输 ...
- RETE算法介绍
RETE算法介绍一. rete概述Rete算法是一种前向规则快速匹配算法,其匹配速度与规则数目无关.Rete是拉丁文,对应英文是net,也就是网络.Rete算法通过形成一个rete网络进行模式匹配,利 ...
- H2O中的随机森林算法介绍及其项目实战(python实现)
H2O中的随机森林算法介绍及其项目实战(python实现) 包的引入:from h2o.estimators.random_forest import H2ORandomForestEstimator ...
- STL 算法介绍
STL 算法介绍 算法概述 算法部分主要由头文件<algorithm>,<numeric>和<functional>组成. <algorithm ...
- Levenshtein字符串距离算法介绍
Levenshtein字符串距离算法介绍 文/开发部 Dimmacro KMP完全匹配算法和 Levenshtein相似度匹配算法是模糊查找匹配字符串中最经典的算法,配合近期技术栏目关于算法的探讨,上 ...
- 机器学习概念之特征选择(Feature selection)之RFormula算法介绍
不多说,直接上干货! RFormula算法介绍: RFormula通过R模型公式来选择列.支持R操作中的部分操作,包括‘~’, ‘.’, ‘:’, ‘+’以及‘-‘,基本操作如下: 1. ~分隔目标和 ...
随机推荐
- 1133: 零起点学算法40——多组测试数据(a+b)II
1133: 零起点学算法40--多组测试数据(a+b)II Time Limit: 1 Sec Memory Limit: 64 MB 64bit IO Format: %lldSubmitte ...
- JavaScript Array 技巧
filter():返回该函数会返回true的项组成的数组 ,,,,]; var result = num.filter(function(item,index,array){ ); }) consol ...
- Git命令行和Xcode结合使用
现在一直使用Git来管理代码,对于有强迫症的我来说,依旧选择了命令行,下面这段话可以更好的解释我为什么喜欢使用终端敲命令. There are a lot of different ways to u ...
- 【模板】Tarjan求强连通分量
有人说这篇博客不是很友好,所以我加了点解释,感觉是不是友好多了? dfn[u]表示节点u在dfs时被访问的次序. low[u]表示节点u能够追溯到的最远的祖先的dfn. ins[u]表示节点u是否在栈 ...
- 为部署ASP.NET Core准备:使用Hyper-V安装Ubuntu Server 16.10
概述 Hyper-V是微软的一款虚拟化产品,和VMWare一样采用的hypervisor技术.它已经被内嵌到Win10系统内,我们只需要进行简单的安装即可.但是前提是要确保你的机器已经启用虚拟化,可以 ...
- java中创建对象中使用默认构造函数的注意点
public class Test3 { private int n; Test3() { System.out.println("调用默认构造器"); } ...
- div模拟输入框input/textarea
//html<!--填写信息--> <div class="info-wrap"> <form class="formToCheck&quo ...
- css伪类的组合用法
利用伪类组合,可以用css代替js以达到目的,少些一下js .textarea:empty:before { display: block; content: '请输入'; color: #ababa ...
- JAVAEE规范基础知识
JavaEE规范基础知识 本人博客文章网址:https://www.peretang.com/basic-knowledge-of-javaee-standard/ JavaEE简介 JavaEE,J ...
- Springmvc的工作流程
1.向服务器发送http请求,请求被前端控制器DispatcherServlet捕获. 2.DispatcherServlet根据servlet.xml中的配置进行URL解析后,得到(URL),然后根 ...