题目描述
帅帅经常跟同学玩一个矩阵取数游戏:对于一个给定的n*m的矩阵,矩阵中的每个元素aij均为非负整数。游戏规则如下:
1.每次取数时须从每行各取走一个元素,共n个。m次后取完矩阵所有元素;
2.每次取走的各个元素只能是该元素所在行的行首或行尾;
3.每次取数都有一个得分值,为每行取数的得分之和,每行取数的得分 = 被取走的元素值*2^i,其中i表示第i次取数(从1开始编号);
4.游戏结束总得分为m次取数得分之和。
帅帅想请你帮忙写一个程序,对于任意矩阵,可以求出取数后的最大得分。
输入输出格式
输入格式:
 
输入文件game.in包括n+1行:
第1行为两个用空格隔开的整数n和m。
第2~n+1行为n*m矩阵,其中每行有m个用单个空格隔开的非负整数。
数据范围:
60%的数据满足:1<=n, m<=30,答案不超过10^16
100%的数据满足:1<=n, m<=80,0<=aij<=1000
 
输出格式:
 
输出文件game.out仅包含1行,为一个整数,即输入矩阵取数后的最大得分。
 
输入输出样例
输入样例#1:
2 3 1 2 3 3 4 2
输出样例#1:
82
说明
NOIP 2007 提高第三题
解题思路
不算高精度,就是一道简单的DP,我们发现每一行都可以独立计算,最后统计答案即可。对于每一行,我们用f[i][j]表示这行还剩下[i,j]时能得到的最高分,那么状态转移方程就显然了——
f[i][j]=max(f[i-1][j]+2^(m-j+i)*a[i-1],f[i][j+1]+2^(m-j+i)*a[j+1])
//上一步是从左取还是从右取呢?
  边界是j>=i,这时f[i][i]表示的只是a[i]两边都被取时的最大得分,要得到这一行取完的得分,还要加上a[i]*2^m.
最后要用in128不然要用高精
#include<iostream>
#include<cmath>
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define FOR(x,y,z) for(int x=y;x<=z;x++)
#define REP(x,y,z) for(int x=y;x>=z;x--)
#define ll long long
#define lll __int128
using namespace std;
int n, m;
lll a[100], p[1000] = { 1 };
lll ans = 0, maxn=-1, f[100][100];
inline void print(lll x)
{
if (x == 0)return;
else print(x / 10);
putchar(x % 10 + '0');
}
inline lll dp()
{
FOR(i, 1, m)
{
REP(j, m, i)
{
f[i][j] = max(f[i - 1][j] + a[i - 1]* p[m - j + i - 1], f[i][j + 1] + a[j + 1] * p[m - j + i - 1]);
}
}
maxn = -1;
FOR(i, 1, m)maxn = max(maxn, f[i][i] + a[i] * p[m]);
return maxn;
}
int main()
{
FOR(i, 1, 100)
p[i] = p[i - 1] << 1;
scanf("%d %d", &n, &m);
FOR(i, 1, n)
{
FOR(j, 1, m)
{
scanf("%d", a+j);
}
ans += dp();
}
 
if (ans == 0)puts("0");
else
print(ans);
return 0;
}
 

矩阵取数游戏洛谷p1005的更多相关文章

  1. AC日记——矩阵取数游戏 洛谷 P1005

    矩阵取数游戏 思路: dp+高精: 代码: #include <bits/stdc++.h> using namespace std; #define ll long long struc ...

  2. 洛谷P1005 矩阵取数游戏

    P1005 矩阵取数游戏 题目描述 帅帅经常跟同学玩一个矩阵取数游戏:对于一个给定的n*m的矩阵,矩阵中的每个元素aij均为非负整数.游戏规则如下: 1.每次取数时须从每行各取走一个元素,共n个.m次 ...

  3. 洛谷 P1005 矩阵取数游戏

    题目描述 帅帅经常跟同学玩一个矩阵取数游戏:对于一个给定的n*m的矩阵,矩阵中的每个元素aij均为非负整数.游戏规则如下: 1.每次取数时须从每行各取走一个元素,共n个.m次后取完矩阵所有元素: 2. ...

  4. 【洛谷P1005】矩阵取数游戏

    矩阵取数游戏 题目链接 每行分别跑一趟区间DP即可 这道题区间DP是非常裸的,按套路来即可 但是很毒瘤的是需要高精度, “我王境泽就是爆零,从这跳下去,也不会用__int128的!” #include ...

  5. [NOIP2007] 提高组 洛谷P1005 矩阵取数游戏

    题目描述 帅帅经常跟同学玩一个矩阵取数游戏:对于一个给定的n*m的矩阵,矩阵中的每个元素aij均为非负整数.游戏规则如下: 1.每次取数时须从每行各取走一个元素,共n个.m次后取完矩阵所有元素: 2. ...

  6. 洛谷1005 【NOIP2007】矩阵取数游戏

    问题描述 帅帅经常跟同学玩一个矩阵取数游戏:对于一个给定的n*m的矩阵,矩阵中的每个元素aij均为非负整数.游戏规则如下: 1.每次取数时须从每行各取走一个元素,共n个.m次后取完矩阵所有元素: 2. ...

  7. P1005 矩阵取数游戏 区间dp 高精度

    题目描述 帅帅经常跟同学玩一个矩阵取数游戏:对于一个给定的n \times mn×m的矩阵,矩阵中的每个元素a_{i,j}ai,j​均为非负整数.游戏规则如下: 每次取数时须从每行各取走一个元素,共n ...

  8. P1005 矩阵取数游戏[区间dp]

    题目描述 帅帅经常跟同学玩一个矩阵取数游戏:对于一个给定的\(m*n\)的矩阵,矩阵中的每个元素\(a_{i,j}\)均为非负整数.游戏规则如下: 每次取数时须从每行各取走一个元素,共n个.经过m次后 ...

  9. [LuoguP1005]矩阵取数游戏 (DP+高精度)

    题面 传送门:https://www.luogu.org/problemnew/show/P1005 Solution 我们可以先考虑贪心 我们每一次都选左右两边尽可能小的数,方便大的放在后面 听起来 ...

随机推荐

  1. Java基础-方法(07)

    方法的定义 方法其实就是完成特定功能的代码块在很多语言里面都有函数的定义函数在Java中被称为方法 格式: 修饰符 返回值类型 方法名(参数类型 参数名1,参数类型 参数名2…) { 函数体; ret ...

  2. LeetCode 110. Balanced Binary Tree (平衡二叉树)

    Given a binary tree, determine if it is height-balanced. For this problem, a height-balanced binary ...

  3. Python实现网站注册验证码生成类

    # -*- coding:utf-8 -*- ''' Created on 2017年4月7日 @author: Water ''' import os import random import st ...

  4. 用Unity3d做游戏(一)

    准备工作: vs2013,直接从官网下载或者这里 http://pan.baidu.com/s/1bFxC54   unity3d,从官网下载,版本4或者5 https://unity3d.com/c ...

  5. [译]ASP.NET Core 2.0 路由引擎

    问题 ASP.NET Core 2.0的路由引擎是如何工作的? 答案 创建一个空项目,为Startup类添加MVC服务和请求中间件: public void ConfigureServices(ISe ...

  6. iOS之 Category 属性 的理解

    在 Objective-C 中可以通过 Category 给一个现有的类添加属性,但是却不能添加实例变量 反正读第一遍的时候我是有点晕的,可以添加“属性”,然后又说“添加实例变量”,第一感觉就好像 有 ...

  7. Vue源码后记-其余内置指令(1)

    把其余的内置指令也搞完吧,来一个全家桶. 案例如下: <body> <div id='app'> <div v-if="vIfIter" v-bind ...

  8. Caffe Ubuntu16.04 GPU安装

  9. Constructing Roads(最小生成树)

    Constructing Roads Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...

  10. IdentityServer4 通过 AccessToken 获取 UserClaims

    实现效果:通过生成的access_token获取用户的一些信息,这样客户端请求的时候,不需要传递用户信息了. 示例配置: public void ConfigureServices(IServiceC ...