分析: 我们已经解决了一维的问题(基础篇中的最大子段和问题),现在变成二维了,我们看看能不能把这个问题转化为一维的问题。最后子矩阵一定是在某两行之间的。假设我们认为子矩阵在第i行和第j列之间,我们如何得到i和j呢,对,枚举。  枚举所有1<=i<=j<=M,表示最终子矩阵选取的行范围。

我们把每一列第i行到第j行之间的和求出来,形成一个数组c,于是一个第i行到第j行之间的最大子矩阵和对应于这个和数组c的最大子段和。于是,我们的算法变为:

 

我们看看标为红色的部分 就是求每列第i行到第j行之间的所有数的和,我们没有再用一个循环求,而是随着j的增长,每次把第j行的结果叠加到之前的和上。 另外求c的最大子数组和是个线性时间算法,实际上它可以和那个k的for循环合并在一起,不过不影响时间复杂度。时间复杂度是O(M^2N)。

最后,我们来提供输入输出数据,由你来写一段程序,实现这个算法,只有写出了正确的程序,才能继续后面的课程。


输入

第1行:M和N,中间用空格隔开(2 <= M,N <= 500)。
第2 - N + 1行:矩阵中的元素,每行M个数,中间用空格隔开。(-10^9 <= M[i] <= 10^9)

输出

输出和的最大值。如果所有数都是负数,就输出0。

输入示例

3 3
-1 3 -1
2 -1 3
-3 1 2


输出示例

7

解题思路:

把从i行到j行的数据按照列的顺序加和,得到一个数组,相当于进行了矩阵压缩。这样就转化为一维的最大子段和问题,会比较容易求解,和最大值比较,得到最后的结果。写的粗略了点,但是还是可以看得懂的,有时间再补充一个完全版的。

源代码:

<pre name="code" class="cpp">#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<stack>
#include<queue>
#include<vector>
#include<deque>
#include<map>
#include<set>
#include<algorithm>
#include<string>
#include<iomanip>
#include<cstdlib>
#include<cmath>
#include<sstream>
#include<ctime>
using namespace std; typedef long long ll;
#define INF -0x3f3f3f3f; ll d[505][505];
ll result[505];
int M,N; void getSubMaxMatrix()
{
int i,j,k;
ll maxSubMaxMartix = INF;
ll temp = 0;
memset(result,0,sizeof(result));
for(i = 0 ; i < N; i++)//第i行
{
for(j = i; j < N; j++)//第j行
{
temp = 0;//每次压缩一维数组后用于计算最大子段和的临时变量
for(k = 0; k < M; k++)
{
//因为i比j小,最次也是相等,所以可以不用二维辅助数组先去求和
//因为递增关系的存在,可以直接利用上一次的result[k]
result[k] = (i == j) ? d[i][k] : result[k] + d[j][k];
//因为计算一次就已经更新好了result[k],所以直接计算一维的最大子段和也不会受影响
if(temp >= 0)
temp += result[k];
else
temp = result[k];
//最后比较一下最大值
if(temp > maxSubMaxMartix)
maxSubMaxMartix = temp;
}
}
}
printf("%lld\n",maxSubMaxMartix);
} int main()
{
int i,j;
scanf("%d%d",&M,&N);//N行M列
for(i = 0; i < N; i++)
{
for(j = 0; j < M; j++)
{
scanf("%lld",&d[i][j]);
}
}
getSubMaxMatrix();
return 0;
}

51Nod--1051最大子矩阵和(DP入门)的更多相关文章

  1. 51nod 1051 最大子矩阵和(DP)

    题意 略 分析 一道经典的DP题,但是我弱到差点做不出来,真的垃圾 设置\(sum(i,j)代表1-i行第j列的前缀和\),然后枚举行i和行j,再枚举列k,做一遍类似一维的最大子段和即可 #inclu ...

  2. 51nod 1051 最大子矩阵和(dp)

    题目链接:51nod 1051 最大子矩阵和 实质是把最大子段和扩展到二维.读题注意m,n... #include<cstdio> #include<cstring> #inc ...

  3. 51nod 1051 最大子矩阵和 【最大子段和DP变形/降维】

    [题目]: 一个M*N的矩阵,找到此矩阵的一个子矩阵,并且这个子矩阵的元素的和是最大的,输出这个最大的值. 例如:*3的矩阵: - - - - 和最大的子矩阵是: - - Input 第1行:M和N, ...

  4. 51nod 1051 最大子矩阵和

    没想到居然可以O(n3)暴力过 就是大概之前的  最大连续子序列和 加成2维度了  枚举起始列 和 终止列 然后计算从1到n行最大的子矩阵的和 注意n 和 m 的输入顺序!! #include< ...

  5. 【模板】51nod 1051 最大子矩阵和

    [题解] 二重循环枚举起始列和终止列,竖着往下加,转化为一个最大子段和问题,逐行累加即可. #include<cstdio> #include<cstring> #includ ...

  6. 51nod 1051 求最大子矩阵和

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1051 1051 最大子矩阵和 基准时间限制:2 秒 空间限制: ...

  7. poj 3254 状压dp入门题

    1.poj 3254  Corn Fields    状态压缩dp入门题 2.总结:二进制实在巧妙,以前从来没想过可以这样用. 题意:n行m列,1表示肥沃,0表示贫瘠,把牛放在肥沃处,要求所有牛不能相 ...

  8. xbz分组题B 吉利数字 数位dp入门

    B吉利数字时限:1s [题目描述]算卦大湿biboyouyun最近得出一个神奇的结论,如果一个数字,它的各个数位相加能够被10整除,则称它为吉利数.现在叫你计算某个区间内有多少个吉利数字. [输入]第 ...

  9. 【dp入门题】【跟着14练dp吧...囧】

    A HDU_2048 数塔 dp入门题——数塔问题:求路径的最大和: 状态方程: dp[i][j] = max(dp[i+1][j], dp[i+1][j+1])+a[i][j];dp[n][j] = ...

  10. 数位dp入门 hdu2089 不要62

    数位dp入门 hdu2089 不要62 题意: 给定一个区间[n,m] (0< n ≤ m<1000000),找出不含4和'62'的数的个数 (ps:开始以为直接暴力可以..貌似可以,但是 ...

随机推荐

  1. Spring MVC前后端的数据传输

    本篇文章主要介绍了Spring MVC中如何在前后端传输数据. 后端 ➡ 前端 在Spring MVC中这主要通过Model将数据从后端传送到前端,一般的写法为: @RequestMapping(va ...

  2. JS框架设计读书笔记之-选择器引擎02

    选择器引擎涉及相关概念 概念 以Sizzle的主函数声明为例,来说明引擎的相关概念. function Sizzle(selector, context, results, seed) { //... ...

  3. Leetcode题解(十三)

    36.Valid Sudoku 题目 代码如下: class Solution { public: bool isValidSudoku(vector<vector<char> &g ...

  4. js判断对象还是数组

    1.对于Javascript 1.8.5(ECMAScript 5),变量名字.isArray( )可以实现这个目的 var a=[]; var b={}; Array.isArray(a);//tr ...

  5. HTML学习笔记 基础标签及css引用案例 第一节 (原创)参考使用表

    <!DOCTYPE html><!--头文件 不是标签 也没有结束,这是声明该文件为HTML5--><html lang="en"><!- ...

  6. DataProtection Key的选择

    代码位于: Microsoft.AspNetCore.DataProtection.KeyManagement.DefaultKeyResolver.cs private IKey FindDefau ...

  7. day2--通过setup设置网卡

    配置IP地址,安装完成centos之后,需要配IP地址,流程如下: 1.首先开启虚拟机,如下: 2.登陆账号,root账户登陆,如下: 3.输入setup,按回车键进入,设置IP的方法有很多种,此处采 ...

  8. redis源码分析之事务Transaction(上)

    这周学习了一下redis事务功能的实现原理,本来是想用一篇文章进行总结的,写完以后发现这块内容比较多,而且多个命令之间又互相依赖,放在一篇文章里一方面篇幅会比较大,另一方面文章组织结构会比较乱,不容易 ...

  9. 《项目架构那点儿事》——Hibernate泛型Dao,让持久层简洁起来

    [前言]hibernate作为持久层ORM技术,它对JDBC进行非常轻量级对象封装,使得我们可以随心所欲的使用面向对象的思想来操作数据 库.同时,作为后台开发的支撑,的确扮演了一个举足轻重的角色,那么 ...

  10. python线程池实现多线程

    参考文献 http://www.open-open.com/news/view/1c0179b http://blog.jobbole.com/52060/ 按照这个博客,实现获取多台服务器的空间使用 ...