分析: 我们已经解决了一维的问题(基础篇中的最大子段和问题),现在变成二维了,我们看看能不能把这个问题转化为一维的问题。最后子矩阵一定是在某两行之间的。假设我们认为子矩阵在第i行和第j列之间,我们如何得到i和j呢,对,枚举。  枚举所有1<=i<=j<=M,表示最终子矩阵选取的行范围。

我们把每一列第i行到第j行之间的和求出来,形成一个数组c,于是一个第i行到第j行之间的最大子矩阵和对应于这个和数组c的最大子段和。于是,我们的算法变为:

 

我们看看标为红色的部分 就是求每列第i行到第j行之间的所有数的和,我们没有再用一个循环求,而是随着j的增长,每次把第j行的结果叠加到之前的和上。 另外求c的最大子数组和是个线性时间算法,实际上它可以和那个k的for循环合并在一起,不过不影响时间复杂度。时间复杂度是O(M^2N)。

最后,我们来提供输入输出数据,由你来写一段程序,实现这个算法,只有写出了正确的程序,才能继续后面的课程。


输入

第1行:M和N,中间用空格隔开(2 <= M,N <= 500)。
第2 - N + 1行:矩阵中的元素,每行M个数,中间用空格隔开。(-10^9 <= M[i] <= 10^9)

输出

输出和的最大值。如果所有数都是负数,就输出0。

输入示例

3 3
-1 3 -1
2 -1 3
-3 1 2


输出示例

7

解题思路:

把从i行到j行的数据按照列的顺序加和,得到一个数组,相当于进行了矩阵压缩。这样就转化为一维的最大子段和问题,会比较容易求解,和最大值比较,得到最后的结果。写的粗略了点,但是还是可以看得懂的,有时间再补充一个完全版的。

源代码:

<pre name="code" class="cpp">#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<stack>
#include<queue>
#include<vector>
#include<deque>
#include<map>
#include<set>
#include<algorithm>
#include<string>
#include<iomanip>
#include<cstdlib>
#include<cmath>
#include<sstream>
#include<ctime>
using namespace std; typedef long long ll;
#define INF -0x3f3f3f3f; ll d[505][505];
ll result[505];
int M,N; void getSubMaxMatrix()
{
int i,j,k;
ll maxSubMaxMartix = INF;
ll temp = 0;
memset(result,0,sizeof(result));
for(i = 0 ; i < N; i++)//第i行
{
for(j = i; j < N; j++)//第j行
{
temp = 0;//每次压缩一维数组后用于计算最大子段和的临时变量
for(k = 0; k < M; k++)
{
//因为i比j小,最次也是相等,所以可以不用二维辅助数组先去求和
//因为递增关系的存在,可以直接利用上一次的result[k]
result[k] = (i == j) ? d[i][k] : result[k] + d[j][k];
//因为计算一次就已经更新好了result[k],所以直接计算一维的最大子段和也不会受影响
if(temp >= 0)
temp += result[k];
else
temp = result[k];
//最后比较一下最大值
if(temp > maxSubMaxMartix)
maxSubMaxMartix = temp;
}
}
}
printf("%lld\n",maxSubMaxMartix);
} int main()
{
int i,j;
scanf("%d%d",&M,&N);//N行M列
for(i = 0; i < N; i++)
{
for(j = 0; j < M; j++)
{
scanf("%lld",&d[i][j]);
}
}
getSubMaxMatrix();
return 0;
}

51Nod--1051最大子矩阵和(DP入门)的更多相关文章

  1. 51nod 1051 最大子矩阵和(DP)

    题意 略 分析 一道经典的DP题,但是我弱到差点做不出来,真的垃圾 设置\(sum(i,j)代表1-i行第j列的前缀和\),然后枚举行i和行j,再枚举列k,做一遍类似一维的最大子段和即可 #inclu ...

  2. 51nod 1051 最大子矩阵和(dp)

    题目链接:51nod 1051 最大子矩阵和 实质是把最大子段和扩展到二维.读题注意m,n... #include<cstdio> #include<cstring> #inc ...

  3. 51nod 1051 最大子矩阵和 【最大子段和DP变形/降维】

    [题目]: 一个M*N的矩阵,找到此矩阵的一个子矩阵,并且这个子矩阵的元素的和是最大的,输出这个最大的值. 例如:*3的矩阵: - - - - 和最大的子矩阵是: - - Input 第1行:M和N, ...

  4. 51nod 1051 最大子矩阵和

    没想到居然可以O(n3)暴力过 就是大概之前的  最大连续子序列和 加成2维度了  枚举起始列 和 终止列 然后计算从1到n行最大的子矩阵的和 注意n 和 m 的输入顺序!! #include< ...

  5. 【模板】51nod 1051 最大子矩阵和

    [题解] 二重循环枚举起始列和终止列,竖着往下加,转化为一个最大子段和问题,逐行累加即可. #include<cstdio> #include<cstring> #includ ...

  6. 51nod 1051 求最大子矩阵和

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1051 1051 最大子矩阵和 基准时间限制:2 秒 空间限制: ...

  7. poj 3254 状压dp入门题

    1.poj 3254  Corn Fields    状态压缩dp入门题 2.总结:二进制实在巧妙,以前从来没想过可以这样用. 题意:n行m列,1表示肥沃,0表示贫瘠,把牛放在肥沃处,要求所有牛不能相 ...

  8. xbz分组题B 吉利数字 数位dp入门

    B吉利数字时限:1s [题目描述]算卦大湿biboyouyun最近得出一个神奇的结论,如果一个数字,它的各个数位相加能够被10整除,则称它为吉利数.现在叫你计算某个区间内有多少个吉利数字. [输入]第 ...

  9. 【dp入门题】【跟着14练dp吧...囧】

    A HDU_2048 数塔 dp入门题——数塔问题:求路径的最大和: 状态方程: dp[i][j] = max(dp[i+1][j], dp[i+1][j+1])+a[i][j];dp[n][j] = ...

  10. 数位dp入门 hdu2089 不要62

    数位dp入门 hdu2089 不要62 题意: 给定一个区间[n,m] (0< n ≤ m<1000000),找出不含4和'62'的数的个数 (ps:开始以为直接暴力可以..貌似可以,但是 ...

随机推荐

  1. LeetCode 561. Array Partition I (数组分隔之一)

    Given an array of 2n integers, your task is to group these integers into n pairs of integer, say (a1 ...

  2. ssm框架的整合

    首先创建一个web工程,我这里使用的IDE为eclipse. 结果目录如下: 添加相关的jar包: 接下来是完成配置文件 首先我们先配置web.xml: <?xml version=" ...

  3. sublime text3 开发必备插件

    1,Package Control 通俗易懂地说,这个是你在完成安装SublimeText后必须安装的东西.你问为什么?因为有了这个特殊的"插件包",你可以很容易地安装.升级.删除 ...

  4. 【初学者必读】能让你月薪过万的5大web前端核心技能

    前言Web前端开发所涉及的内容主要包括W3C标准中的结构.行为和表现,那么这三项中我们需要掌握的核心技能是什么呢?看小编来为你揭开谜底的. 1.开发语言 HTML发展历史有二十多年,历经多次版本更新, ...

  5. EasyUI实现购物车、菜单和窗口栏等最常用的用户界面功能

    一.EasyUI jQuery EasyUI 是一个基于 jQuery 的框架,集成了各种用户界面插件. easyui 提供建立现代化的具有交互性的 javascript 应用的必要的功能. 使用 e ...

  6. css超过一定长度显示省略号

    overflow: hidden; white-space: nowrap; text-overflow: ellipsis;

  7. 行内脚本的位置放置----css阻塞行内脚本

    行内脚本:避免放置在css和其他资源之间. 若在head中,最好放在css样式表之前,如果放置在样式表之后,会引起css阻塞. css阻塞:由于浏览器要保证css和JavaScript的执行顺序,cs ...

  8. 统一addEventListener与attachEvent中this指向问题

    1.this指向问题 使用addEventListener注册的事件,事件处理函数中 this指向目标元素: 使用attachEvent注册的事件,事件处理函数中 this指向window对象 要想将 ...

  9. css 权重 特殊性

    选择器的特异性由 CSS2 规范定义如下:     !important的规则比其他的权值都大     p{color: red !important} 如果声明来自于“style”属性,而不是带有选 ...

  10. React + Node 单页应用「一」前端搭建

    项目地址 预览地址 原文地址 记录最近做的一个 demo,前端使用 React,用 React Router 实现前端路由,Koa 2 搭建 API Server, 最后通过 Nginx 做请求转发. ...