题目描述

C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市。任意两个

城市之间最多只有一条道路直接相连。这 m 条道路中有一部分为单向通行的道路,一部分

为双向通行的道路,双向通行的道路在统计条数时也计为 1 条。

C 国幅员辽阔,各地的资源分布情况各不相同,这就导致了同一种商品在不同城市的价

格不一定相同。但是,同一种商品在同一个城市的买入价和卖出价始终是相同的。

商人阿龙来到 C 国旅游。当他得知同一种商品在不同城市的价格可能会不同这一信息

之后,便决定在旅游的同时,利用商品在不同城市中的差价赚回一点旅费。设 C 国 n 个城

市的标号从 1~ n,阿龙决定从 1 号城市出发,并最终在 n 号城市结束自己的旅行。在旅游的

过程中,任何城市可以重复经过多次,但不要求经过所有 n 个城市。阿龙通过这样的贸易方

式赚取旅费:他会选择一个经过的城市买入他最喜欢的商品――水晶球,并在之后经过的另

一个城市卖出这个水晶球,用赚取的差价当做旅费。由于阿龙主要是来 C 国旅游,他决定

这个贸易只进行最多一次,当然,在赚不到差价的情况下他就无需进行贸易。

假设 C 国有 5 个大城市,城市的编号和道路连接情况如下图,单向箭头表示这条道路

为单向通行,双向箭头表示这条道路为双向通行。

假设 1~n 号城市的水晶球价格分别为 4,3,5,6,1。

阿龙可以选择如下一条线路:1->2->3->5,并在 2 号城市以 3 的价格买入水晶球,在 3

号城市以 5 的价格卖出水晶球,赚取的旅费数为 2。

阿龙也可以选择如下一条线路 1->4->5->4->5,并在第 1 次到达 5 号城市时以 1 的价格

买入水晶球,在第 2 次到达 4 号城市时以 6 的价格卖出水晶球,赚取的旅费数为 5。

现在给出 n 个城市的水晶球价格,m 条道路的信息(每条道路所连接的两个城市的编号

以及该条道路的通行情况)。请你告诉阿龙,他最多能赚取多少旅费。

输入输出格式

输入格式:

第一行包含 2 个正整数 n 和 m,中间用一个空格隔开,分别表示城市的数目和道路的

数目。

第二行 n 个正整数,每两个整数之间用一个空格隔开,按标号顺序分别表示这 n 个城

市的商品价格。

接下来 m 行,每行有 3 个正整数,x,y,z,每两个整数之间用一个空格隔开。如果 z=1,

表示这条道路是城市 x 到城市 y 之间的单向道路;如果 z=2,表示这条道路为城市 x 和城市

y 之间的双向道路。

输出格式:

输出文件 trade.out 共 1 行,包含 1 个整数,表示最多能赚取的旅费。如果没有进行贸易,

则输出 0。

输入输出样例

输入样例#1:

5 5
4 3 5 6 1
1 2 1
1 4 1
2 3 2
3 5 1
4 5 2 
输出样例#1:

5

说明

【数据范围】

输入数据保证 1 号城市可以到达 n 号城市。

对于 10%的数据,1≤n≤6。

对于 30%的数据,1≤n≤100。

对于 50%的数据,不存在一条旅游路线,可以从一个城市出发,再回到这个城市。

对于 100%的数据,1≤n≤100000,1≤m≤500000,1≤x,y≤n,1≤z≤2,1≤各城市

水晶球价格≤100。

NOIP 2009 提高组 第三题

说明

------------------------------------------------------

Oops! 你的分析出现了一些问题,需要在这儿省略.

           已完成  1%                                       : (

请查阅代码:  0x23333333或联系版主

------------------------------------------------------

 #include<cstdio>
 #include<iostream>
 #include<vector>
 #include<algorithm>
 using namespace std;
 #define N 100002
 int n,m,s[N],maxn[N],minn[N],ans;
 vector<int>a[N],b[N];
 void dfs1(int g ,int h){//g为城市编号,h为当前城市的价格
     minn[g]=min(h,minn[g]);//因为双向边可以来回,买价可以更低
     ;i<a[g].size();i++)
         if(h<minn[a[g][i]])
             dfs1(a[g][i],min(s[a[g][i]],h));
 }
 void dfs2(int g ,int h){//同理
     maxn[g]=max(h,maxn[g]);
     ;i<b[g].size();i++)
         if(h>maxn[b[g][i]])
             dfs2(b[g][i],max(s[b[g][i]],h));
 }
 int main(){
     /*
         模版转自:http://www.cnblogs.com/shenben/p/5634839.html
     */
     scanf("%d%d",&n,&m);
     ;i<=n;i++)
         scanf("%d",s+i);//(dR)每个城市的价格
     ,x,y,z;i<=m;i++){
         scanf("%d%d%d",&x,&y,&z);
         )
             a[x].push_back(y),b[y].push_back(x);//单边
         else
             a[x].push_back(y),a[y].push_back(x),b[x].push_back(y),b[y].push_back(x);//双边
     }
     ;i<=n;i++)
         maxn[i]=-1e9,minn[i]=1e9;
     dfs1(,s[]);//低价买
     dfs2(n,s[n]);//高价卖
     ;i<=n;i++)//类似题: 我记得有来着
         if(maxn[i]!=-1e9&&minn[i]!=1e9)
             ans=max(ans,maxn[i]-minn[i]);
     printf("%d\n",ans);
     ;
 }

代码

[最短路][部分转] P1073 最优贸易的更多相关文章

  1. Luogu P1073 最优贸易(最短路)

    P1073 最优贸易 题意 题目描述 \(C\)国有\(n\)个大城市和\(m\)条道路,每条道路连接这\(n\)个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这\(m\)条道路中有 ...

  2. 洛谷 P1073 最优贸易 最短路+SPFA算法

    目录 题面 题目链接 题目描述 输入输出格式 输入格式 输出格式 输入输出样例 输入样例 输出样例 说明 思路 AC代码 题面 题目链接 P1073 最优贸易 题目描述 C国有 $ n $ 个大城市和 ...

  3. 洛谷 P1073 最优贸易 解题报告

    P1073 最优贸易 题目描述 \(C\)国有\(n\)个大城市和\(m\)条道路,每条道路连接这\(n\)个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这\(m\)条道路中有一部分 ...

  4. 洛谷P1073 最优贸易==codevs1173 最优贸易

    P1073 最优贸易 题目描述 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个 城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一 ...

  5. 洛谷——P1073 最优贸易

    P1073 最优贸易 n 个城市间以 m 条有向道路连接, 小 T 从 1 号城市出发, 将要去往 n 号城市.小 T 观察到一款商品 Z 在不同的城市的价格可能不尽相同,小 T 想要在旅行中的某一个 ...

  6. P1073 最优贸易 建立分层图 + spfa

    P1073 最优贸易:https://www.luogu.org/problemnew/show/P1073 题意: 有n个城市,每个城市对A商品有不同的定价,问从1号城市走到n号城市可以最多赚多少差 ...

  7. P1073 最优贸易 分层图+最长路

    洛谷p1073 最优贸易 链接 首先易得暴n2的暴力,暴力枚举就行 显然1e5的数据是会炸的 我们再分析题意,发现一共分为两个个步骤,也可以说是状态,即在一个点买入,在另一个点卖出,我们可以构建一个三 ...

  8. 洛谷P1073 最优贸易 [图论,DP]

    题目传送门 最优贸易 题目描述 C 国有n 个大城市和m 条道路,每条道路连接这n 个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这m 条道路中有一部分为单向通行的道路,一部分为双向 ...

  9. Luogu P1073 最优贸易

    题目描述 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分为双向通行的道路,双 ...

随机推荐

  1. vue学习前奏——webpack

    "工欲善其事必先利其器",要想学习vue,首先需要我们去了解webpack,便于后期快速构建运行项目.废话不多说,下面开始介绍在开始一个vue项目前我们需要对webpack有一定的 ...

  2. 无需安装SqlServer打开并管理SqlServer数据库的方法

    本地安装的数据库是SqlServer2008R2的 在附加一个数据库文件时出现了以下错误 错误的原因就是附加的数据库版本太高,而本地数据库版本太低导致的 通过各种方式才查询到附加的数据库版本是SqlS ...

  3. thinkphp使用phpqrcode生成带logo二维码

    //二维码图片保存路径 $pathname = date("Ymd",time()); $pathname = "./Qrcode/" . $pathname; ...

  4. 微信小程序支付

    @Controllerpublic class UserPayToMerchantController { public static final String appid="******* ...

  5. 关于php加密库加密数据上传数据库或解密出错的问题

    php加密拓展库随着php版本的更新,函数的使用方法有所改变,所以加密模式推荐使用ecb,其中加密算法19种,加密模式8种,通过这种方式加密后的数据上传数据库后提取出来进行解密会发现结果是乱码,我认为 ...

  6. JavaScript--我发现,原来你是这样的JS:面向对象编程OOP[2]--(创建你的那个对象吧)

    一.介绍 我们继续面向对象吧,这次是面向对象编程的第二篇,主要是讲创建对象的模式,希望大家能从博客中学到东西. 时间过得很快,还是不断的学习吧,为了自己的目标. 二.创建对象 1.前面的创建对象方式 ...

  7. ssh秘钥分发错误“/usr/bin/ssh-copy-id: ERROR: No identities found”

    在做ssh的时候出现下面的错误,这个错误根本没有遇到过啊,仔细一看,后面的端口不对,我要发到的服务器端口是22,我想肯定是这个原因,结果不加端口,还是提示 这个错误,于是咨询下其他人,结果发现要分发的 ...

  8. 取得 iframe 容器的 URL

    检测所在窗口是否为最外层的窗口,若不是则跳脱包含它的框架 if( window !== window.top ) {    window.top.location = location; } top ...

  9. Windows 配置 allure report 环境

    1:配置Java环境(运行allure 需要) 2:安装powershell 3:安装scoop方法 :运行 powershell 输入 : iex (new-object net.webclient ...

  10. Android-Async-Http 特性简单分析

    如下是官方文档描述此库的特点: All requests are made outside of your app’s main UI thread, but any callback logic w ...