传送门

先考虑只有 01 边权的情况

显然可以DP+矩阵加速

但是现在边权不止 1

然鹅最大也只有 9

所以从这里入手,把点拆成 9 个,然后点之间的边权也就可以变成 1 了

同样的转移和矩阵加速

注意点之间的连接关系

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
inline int read()
{
int x=,f=; char ch=getchar();
while(ch<''||ch>'') { if(ch=='-') f=-; ch=getchar(); }
while(ch>=''&&ch<='') { x=(x<<)+(x<<)+(ch^); ch=getchar(); }
return x*f;
}
const int N=,mo=;
inline int fk(int x) { return x>=mo ? x-mo : x; }
int n,T,m;
struct matrix//矩阵乘法不解释
{
int a[N][N];
matrix () { memset(a,,sizeof(a)); }
inline matrix operator * (const matrix &tmp) const {
matrix res;
for(int i=;i<=m;i++)
for(int j=;j<=m;j++)
for(int k=;k<=m;k++)
res.a[i][j]=fk(res.a[i][j]+a[i][k]*tmp.a[k][j]%mo);
return res;
}
}F,M;
matrix ksm(matrix X,int Y)//矩阵快速幂不解释
{
matrix res;
for(int i=;i<=m;i++) res.a[i][i]=;
while(Y)
{
if(Y&) res=res*X;
X=X*X; Y>>=;
}
return res;
}
char s[N];
int main()
{
n=read(); T=read(); m=n*;
for(int i=;i<=n;i++)//构造转移矩阵
{
int t=(i-)*+;
for(int j=;j<;j++) M.a[t+j][t+j-]=;
scanf("%s",s+);
for(int j=;j<=n;j++)
{
if(s[j]=='') continue;
M.a[t][(j-)*+s[j]-'']=;
}
}
F.a[][]=;
F=F*ksm(M,T);
printf("%d",F.a[][(n-)*+]);
return ;
}

P4159 [SCOI2009]迷路的更多相关文章

  1. bzoj1297 / P4159 [SCOI2009]迷路

    P4159 [SCOI2009]迷路 如果边权只有 0/1 那么不就是一个灰常简单的矩阵快速幂吗! 然鹅边权 $<=9$ 所以我们把每个点拆成9个点! 解决~ #include<iostr ...

  2. [bzoj1297] [洛谷P4159] [SCOI2009] 迷路

    Description windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同 ...

  3. Luogu P4159 [SCOI2009]迷路 矩阵快速幂+精巧转化

    大致就是矩阵快速幂吧.. 这个时候会发现这些边权$\le 9$,然后瞬间想到上回一道题:是不是可以建一堆转移矩阵再建一个$lcm(1,2,3,4,5,6,7,8,9)$的矩阵?...后来发现十分的慢q ...

  4. LUOGU P4159 [SCOI2009]迷路(矩阵乘法)

    传送门 解题思路 以前bpw讲过的一道题,顺便复习一下矩阵乘法.做法就是拆点,把每个点拆成\(9\)个点,然后挨个连边.之后若\(i\)与\(j\)之间的边长度为\(x\),就让\(i\)的第\(x\ ...

  5. BZOJ 1297: [SCOI2009]迷路( dp + 矩阵快速幂 )

    递推式很明显...但是要做矩阵乘法就得拆点..我一开始很脑残地对于每一条权值v>1的边都新建v-1个节点去转移...然后就TLE了...把每个点拆成9个就可以了...时间复杂度O((9N)^3* ...

  6. 1297: [SCOI2009]迷路

    1297: [SCOI2009]迷路 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 652  Solved: 442[Submit][Status] ...

  7. 【矩阵快速幂】bzoj1297 [SCOI2009]迷路

    1297: [SCOI2009]迷路 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1407  Solved: 1007[Submit][Status ...

  8. [BZOJ 1297][SCOI2009]迷路

    1297: [SCOI2009]迷路 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1418  Solved: 1017[Submit][Status ...

  9. B20J_1297_[SCOI2009]迷路_矩阵乘法

    B20J_1297_[SCOI2009]迷路_矩阵乘法 题意:有向图 N 个节点,从节点 0 出发,必须恰好在 T 时刻到达节点 N-1.总共有多少种不同的路径? 2 <= N <= 10 ...

随机推荐

  1. C#高级参数params的使用

    params,可变参数,使用十分简单,看代码吧. using System; using System.Collections.Generic; using System.Linq; using Sy ...

  2. -bash : ** : command not found的问题解决(图文详解)

    问题来源 我不小心,配置错了,少了个export和PATH没配对.   source /etc/profile 之前一定要留心,否则出错让你后悔去! 问题导致现象1 问题导致现象2 解决办法 按e键, ...

  3. MySQL建立一个连接工具类

    public class DBUtil { public static Connection getConn() { Connection conn = null; try { Class.forNa ...

  4. android键盘的Done按钮

    在EditText中,可以使用setImeOptions()方法来来开启软键盘的"Done"按钮. 示例代码如下:editText.setImeOptions(EditorInfo ...

  5. ubuntu16部署gitlab

    一.gitlab的安装 1. 安装依赖包 $ sudo apt-get update #如无ssh还需安装openssh-server $ sudo apt-get install postfix c ...

  6. Swing事件机制

    -------------siwuxie095                             Swing 是基于 MVC 结构的框架     在 Swing 中,所有的用户操作都是基于 Co ...

  7. cocos2d-js 序列帧动画

    var spriteCache = cc.spriteFrameCache;spriteCache.addSpriteFrames(res.fireworks_plist,res.fireworks_ ...

  8. SpringBoot04 日志框架之Logback

    1 日志框架选择 日志门面:SLF4J 日志实现:Logback 2 实现控制台的日志打印输出01 2.1 在需要实现日志信息打印的类中实例化Logger对象 坑01:springBoot项目默认使用 ...

  9. C++ 成员函数前和函数后加const修饰符区别

    博客转载自: https://www.iteblog.com/archives/214.html 分析以下一段程序,阐述成员函数后缀const 和 成员函数前const 的作用 #include< ...

  10. 算法Sedgewick第四版-第1章基础-1.4 Analysis of Algorithms-007按位置,找出数组相关最大值

    Given an array a[] of N real numbers, design a linear-time algorithm to find the maximum value of a[ ...