[jzoj 4668] [NOIP2016提高A组模拟7.19] 腐败 解题报告(质数分类+慢速乘)
题目链接:
http://172.16.0.132/senior/#main/show/4668
题目:
题解:
考虑把A数组里的每个元素分解质因数,对于每个质因数开一个vector存一下包含这个质因数的元素对应的这个质因数的指数
我们可以枚举质因数分别处理。为什么时间复杂度是对的呢?因为对于任何一个元素质因数种类是不会很多的,而对于每个质因数我们仅考虑包含它的数而不是全部扫一遍,因而是对的
枚举质因数之后,我们得到它对应的指数序列。对于小于等于根号1e7的质因数,考虑把这个指数序列从小到大,对于某个位置与之前位置的贡献就是靠前位置的指数,因此我们不断累加前缀统计答案就好了;对于另外的质因数,可以发现包含它的指数序列只能是1,所以我们不需要排序可以直接得到答案(注意到要求计算的数列其实就是元素之间两两只算一次,但注意还需要算上和本身的gcd)
这个模数比较坑,直接乘取模的话会爆long long,因此我们采用慢速乘(不是类似快速幂的那种)
比如x*y,我们令inf=1e7
$a1=x \mod inf$
$a2=x/inf$
$b1=y \mod inf$
$b2=y/inf$
我们拆开来计算就是了,具体看代码
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<iostream>
#include<cmath>
#include<vector>
using namespace std;
typedef long long ll; const int N=4e4+;
const ll mo=1e11+;
const int M=1e6+;
const ll inf=1e7+;
int n,cnt;
int a[N],vis[inf];
ll p[N];
vector <int> pi[M];
inline int read()
{
char ch=getchar();int s=,f=;
while (ch<''||ch>'') {if (ch=='-') f=-;ch=getchar();}
while (ch>=''&&ch<='') {s=(s<<)+(s<<)+ch-'';ch=getchar();}
return s*f;
}
void div(int x)
{
for (int i=;i*i<=x;i++)
{
if (x%i) continue;
if (!vis[i]) p[++cnt]=i,vis[i]=cnt;
int s=;
while (x%i==) x/=i,++s;
pi[vis[i]].push_back(s);
}
if (x>)
{
if (!vis[x]) p[++cnt]=x,vis[x]=cnt;
pi[vis[x]].push_back();
}
}
ll mul(ll x,ll y)
{
ll a1=x%inf;
ll a2=x/inf;
ll b1=y%inf;
ll b2=y/inf;
ll re=;
re=(re+a2*inf%mo*b2%mo*inf%mo)%mo;
re=(re+a2*inf%mo*b1%mo)%mo;
re=(re+a1*inf%mo*b2%mo)%mo;
re=(re+a1*b1%mo)%mo;
return re;
}
ll qpow(ll x,ll y)
{
ll re=;
for (;y;y>>=,x=mul(x,x)) if (y&) re=mul(re,x);
return re;
}
int main()
{
n=read();
for (int i=;i<=n;i++) a[i]=read(),div(a[i]);
ll ans=;
for (int i=;i<=cnt;i++)
{
if (1ll*p[i]*p[i]<=inf)
{
int pnt=pi[i].size();
sort(pi[i].begin(),pi[i].end());
ll s=;
for (int j=;j<pnt;j++)
{
ans=mul(ans,qpow(p[i],s));
s+=pi[i][j];
}
}
else
{
ll c=pi[i].size();
ans=mul(ans,qpow(p[i],c*(c-)/));
}
}
for (int i=;i<=n;i++) ans=mul(ans,1ll*a[i]);
printf("%lld\n",ans);
return ;
}
[jzoj 4668] [NOIP2016提高A组模拟7.19] 腐败 解题报告(质数分类+慢速乘)的更多相关文章
- [JZOJ 100026] [NOIP2017提高A组模拟7.7] 图 解题报告 (倍增)
题目链接: http://172.16.0.132/senior/#main/show/100026 题目: 有一个$n$个点$n$条边的有向图,每条边为$<i,f(i),w(i)>$,意 ...
- [jzoj 4722] [NOIP2016提高A组模拟8.21] 跳楼机 解题报告 (spfa+同余)
题目链接: http://172.16.0.132/senior/#main/show/4722 题目: DJL为了避免成为一只咸鱼,来找srwudi学习压代码的技巧.Srwudi的家是一幢h层的摩天 ...
- 【NOIP2016提高A组模拟8.19】(雅礼联考day2)总结
第一题又有gcd,又有xor,本来想直接弃疗,不过后来想到了个水法: 当两个相邻的数满足条件时,那么他们的倍数也可能满足条件.然后没打,只打了个暴力. 正解就是各种结论,各种定理搞搞. 第二题,想都不 ...
- 【NOIP2016提高A组模拟8.19】(雅礼联考day2)公约数
题目 给定一个正整数,在[1,n]的范围内,求出有多少个无序数对(a,b)满足gcd(a,b)=a xor b. 分析 显然a=b是一定不满足, 我们设\(a>b\), 易得gcd(a,b)&l ...
- 【NOIP2016提高A组模拟8.19】(雅礼联考day2)树上路径
题目 给出一棵树,求出最小的k,使得,且在树中存在路径p,使得k>=S且k<=E.(k为路径p上的边的权值和). 分析 点分治,设当前为x的,求在以x为根的子树中,经过x的路径(包括起点或 ...
- 【JZOJ4715】【NOIP2016提高A组模拟8.19】树上路径
题目描述 给出一棵树,求出最小的k,使得,且在树中存在路径p,使得k>=S且k<=E.(k为路径p上的边的权值和) 输入 第一行给出N,S,E.N代表树的点数,S,E如题目描述. 下面N- ...
- [JZOJ 5437] [NOIP2017提高A组集训10.31] Sequence 解题报告 (KMP)
题目链接: http://172.16.0.132/senior/#main/show/5437 题目: 题解: 发现满足上述性质并且仅当A序列的子序列的差分序列与B序列的差分序列相同 于是我们把A变 ...
- JZOJ 4732. 【NOIP2016提高A组模拟8.23】函数
4732. [NOIP2016提高A组模拟8.23]函数 (Standard IO) Time Limits: 1500 ms Memory Limits: 262144 KB Detailed ...
- JZOJ 【NOIP2017提高A组模拟9.14】捕老鼠
JZOJ [NOIP2017提高A组模拟9.14]捕老鼠 题目 Description 为了加快社会主义现代化,建设新农村,农夫约(Farmer Jo)决定给农庄里的仓库灭灭鼠.于是,猫被农夫约派去捕 ...
随机推荐
- 0x35 高斯消元与线性空间
颓了十天回来做题果然…… 感觉还是很有收获的,这两以前都没学过 bzoj1013: [JSOI2008]球形空间产生器sphere poj1830(upd) 之前做得很烂还被 D飞*2 了..重做一次 ...
- kafka windows安装 命令行下使用测试
1.zookeeper安装: (https://zookeeper.apache.org/releases.html) ①进入zookeeper的相关设置所在的文件目录,例如本文的:D:\bigd ...
- 个人作业—Alpha项目测试
这个作业属于哪个课程 https://edu.cnblogs.com/campus/xnsy/SoftwareEngineeringClass2 这个作业要求在哪里 https://edu.cnblo ...
- python黏包解决方案
解决方案 # 我们可以借助一个模块,这个模块可以把要发送的数据长度转换成固定长度的字节.这样客户端每次接 # 收消息之前只要先接受这个固定长度字节的内容看一看接下来要接收的信息大小,那么最终接受的数据 ...
- VSCode (Code) 技法
本人使用插件推荐 indent-rainbow https://marketplace.visualstudio.com/items?itemName=oderwat.indent-rainbow B ...
- Codeforces 994B. Knights of a Polygonal Table
解题思路 将骑士按力量从小到大排序,到第i个骑士的时候,前面的i-1个骑士他都可以击败,找出金币最多的k个. 用multiset存金币最多的k个骑士的金币数,如果多余k个,则删除金币数最小的,直到只有 ...
- Sql Server远程还原
1.假设备份文件xxxx.bak大小约300G,还原后所占用的空间为900G 2.磁盘空间只有1T,若将备份文件拷贝过来,空间剩余700G,无法成功还原,因此通过远程方式还原. 例子如下: SQLSE ...
- 安装wampserver遇到的问题及解决方案
丢失api-ms-win-crt-runtime-l1-1-0.dll 安装完wampserver,启动服务器的时候遇到一些问题,提示说缺失dll文件,如下图所示: 网上一搜,很多人出现过丢失api- ...
- RocketMQ学习笔记(12)----RocketMQ的Consumer API简介
由于消息的消费方式有两种,所以两种方式也有不同的API: 1. PushConsumer的配置 1. consumerGroup: 默认值为DEFAULT_CONSUMER,Consumer组名,多个 ...
- Python 绘图与可视化 matplotlib 散点图、numpy模块的random()
效果: 代码: def scatter_curve(): # plt.subplot(1,1,1) n=1024 X=np.random.normal(0,1,n) Y=np.random.norma ...