LightOJ - 1038 Race to 1 Again 递推+期望
题目大意:给出一个数,要求你按一定的规则将这个数变成1
规则例如以下,如果该数为D,要求你在[1,D]之间选出D的因子。用D除上这个因子,然后继续按该规则运算。直到该数变成1
问变成1的期望步数是多少
解题思路:递推,设该数为D。有N个因子,各自是1,n1,n2,n3…nn-2,D,
那么选到每一个因子的概率都是1/N,除非选到D,不然选到其它因子的话都要多1步。然后再计算D除以该因子的期望
这就能得到公式了,设dp[D]为数D按规则变成1的期望步数
那么dp[D] = 1/N * (dp[D/1] + 1) + 1 / N * (dp[D/n1] + 1) + 1/ N * (dp[D/n2] + 1) + … + 1/N * (dp[D/nn-2] + 1) + 1/N * (dp[D / D] + 1)
化简得 dp[D] = 1 / (N-1) * (dp[D/n1] + dp[D/n2] + … + dp[D/nn-2] + N)
#include<cstdio>
#include<cstring>
#include<cmath>
#define maxn 100010
double dp[maxn];
void init() {
dp[1] = double(0);
for(int i = 2; i <= 1e5; i++) {
int cnt = 0;
dp[i] = 0.0;
for(int j = 1; j * j <= i; j++) {
if(i % j == 0 && i / j != j) {
cnt += 2;
dp[i] += dp[j] + dp[i / j] + 2;
}
if(j * j == i) {
cnt += 1;
dp[i] += dp[j] + 1;
}
}
dp[i] /= (cnt - 1);
}
}
int main() {
init();
int test, cas = 1, n;
scanf("%d", &test);
while(test--) {
scanf("%d", &n);
printf("Case %d: %.10lf\n", cas++, dp[n]);
}
return 0;
}
LightOJ - 1038 Race to 1 Again 递推+期望的更多相关文章
- Lightoj 1038 - Race to 1 Again (概率DP)
题目链接: Lightoj 1038 - Race to 1 Again 题目描述: 给出一个数D,每次可以选择数D的一个因子,用数D除上这个因子得到一个新的数D,为数D变为1的操作次数的期望为多少 ...
- tyvj P1952 Easy(递推+期望)
P1952 Easy 时间: 1000ms / 空间: 131072KiB / Java类名: Main 描述 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:(我们来简化一下 ...
- LightOJ - 1038 Race to 1 Again —— 期望
题目链接:https://vjudge.net/problem/LightOJ-1038 1038 - Race to 1 Again PDF (English) Statistics Foru ...
- LightOJ 1038 - Race to 1 Again(期望+DP)
题目链接:http://lightoj.com/volume_showproblem.php?problem=1038 题意是:给你一个N (1 ≤ N ≤ 105) 每次N都随机选一个因子d,然后让 ...
- Lightoj 1038 - Race to 1 Again【期望+dp】
题目:戳这里 题意:一个数字n不断迭代地除以自身的因子得到1.求这个过程中操作除法次数的期望. 解题思路: 求概率基本都是从一个最基础的状态开始延伸推出公式,得出答案.因为每个数都有个共同的最终状态1 ...
- lightoj 1038 Race to 1 Again
题意:给一个数,用这个数的因数除以这个数,直到为1时,求除的次数的期望. 设一个数的约数有M个,E[n] = (E[a[1]]+1)/M+(E[a[2]]+1)/M+...+(E[a[M]]+1)/M ...
- LightOJ 1038 Race to 1 Again(概率dp+期望)
https://vjudge.net/problem/LightOJ-1038 题意:给出一个数n,每次选择n的一个约数m,n=n/m,直到n=1,求次数的期望. 思路:d[i]表示将i这个数变成1的 ...
- LightOJ 1038 Race to 1 Again (概率DP,记忆化搜索)
题意:给定一个数 n,然后每次除以他的一个因数,如果除到1则结束,问期望是多少. 析:概率DP,可以用记忆公搜索来做,dp[i] = 1/m*sum(dp[j] + 1) + 1/m * (dp[i] ...
- LightOJ 1244 - Tiles 猜递推+矩阵快速幂
http://www.lightoj.com/volume_showproblem.php?problem=1244 题意:给出六种积木,不能旋转,翻转,问填充2XN的格子有几种方法.\(N < ...
随机推荐
- python 添加自定义库
首先,写一个库文件aaa.py 格式,在python安装目录下面创建一个空的文件夹命名Function 或者其他文件名, 然后将文件保存在python 安装目录下面的一个Function文件夹下面. ...
- [AngularJS]Chapter 4 AngularJS程序案例分析
前边讲的都是基础.本章看看他们怎么合作的. 我们要建一个程序.一次一步.章末结束 [这个程序] GutHub是一个简单的菜谱管理程序.功能是存好吃的的菜谱并提供步骤.这个程序包含: 两列布局 左边是导 ...
- POJ 3270
黑书上的经典题了.我说说解这个题的巧妙的地方吧. 首先,竟然和置换联系起来了.因为其实一个交换即至少可以使其中一个元素到达指定位置了.和循环置换联合起来,使得一个循环内的数可以一步到达指定位置,很巧妙 ...
- 远古守卫/cocos2d-x 源代码/塔防游戏/高仿王国保卫战
下载地址:spm=686.1000925.0.0.j3MZhz&id=550780702354" style="color:rgb(224,102,102)"&g ...
- [Python]threading local 线程局部变量小測试
概念 有个概念叫做线程局部变量.一般我们对多线程中的全局变量都会加锁处理,这样的变量是共享变量,每一个线程都能够读写变量,为了保持同步我们会做枷锁处理.可是有些变量初始化以后.我们仅仅想让他们在每一个 ...
- C++_关于const 的全面总结
C++中的constkeyword的使用方法很灵活.而使用const将大大改善程序的健壮性.本人依据各方面查到的资料进行总结例如以下,期望对朋友们有所帮助. Const 是C++中经常使用的类型修饰符 ...
- Codeforces 13C Sequence dp
题目链接:http://codeforces.com/problemset/problem/13/C 题意: 给定n长的序列 每次操作能够给每一个数++或-- 问最少须要几步操作使得序列变为非递减序列 ...
- WinForm容器内控件批量效验是否同意为空?设置是否仅仅读?设置是否可用等方法分享
WinForm容器内控件批量效验是否同意为空?设置是否仅仅读?设置是否可用等方法分享 在WinForm程序中,我们有时须要对某容器内的全部控件做批量操作.如批量推断是否同意为空?批量设置为仅仅读.批量 ...
- 细述 Java垃圾回收机制→Types of Java Garbage Collectors
细述 Java垃圾回收机制→Types of Java Garbage Collectors 转自:https://segmentfault.com/a/1190000006214497 本文非原创, ...
- div在父集高度未知的情况下垂直居中的方法
父集高度未知,子集高度已知: 可以使用弹性盒来解决: justify-content属性定义了项目在主轴上的对齐方式. align-items属性定义项目在交叉轴上如何对齐.