2705: [SDOI2012]Longge的问题

Time Limit: 3 Sec  Memory Limit: 128 MB
Submit: 2554  Solved: 1566
[Submit][Status][Discuss]

Description

Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题。现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N)。

Input

一个整数,为N。

Output

一个整数,为所求的答案。

Sample Input

6

Sample Output

15

HINT

【数据范围】

对于60%的数据,0<N<=2^16。

对于100%的数据,0<N<=2^32。

Source

分析:

继续学数学...如果今天不GG,预计应该是高产的一天...然而题目难度2333...

根据Dirichlet卷积:id(i)=i,id=φ×1,(f×g)=Σ(d|n)f(d)*g(n/d)

Σ(1<=i<=n) gcd(i,n)

=Σ(1<=i<=n) id(gcd(i,n))

=Σ(1<=i<=n) Σ(d|gcd(i,n))φ(d)

=Σ(d|n)φ(d)*n/d

代码:

 #include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
//by NeighThorn
#define int long long
using namespace std;
//大鹏一日同风起,扶摇直上九万里 int n,m,ans; inline int phi(int x){
int cnt=x;
for(int i=;i<=m;i++)
if(x%i==){
cnt=cnt/i*(i-);
while(x%i==)
x/=i;
}
if(x>)
cnt=cnt/x*(x-);
return cnt;
} signed main(void){
scanf("%lld",&n);
m=sqrt(n);ans=;
for(int i=;i<=m;i++)
if(n%i==){
ans+=phi(i)*n/i;
if(n/i>m)
ans+=phi(n/i)*i;
}
printf("%lld\n",ans);
return ;
}

by NeighThorn

BZOJ 2705: [SDOI2012]Longge的问题的更多相关文章

  1. BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2553  Solved: 1565[Submit][ ...

  2. BZOJ 2705: [SDOI2012]Longge的问题 GCD

    2705: [SDOI2012]Longge的问题 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnl ...

  3. bzoj 2705: [SDOI2012]Longge的问题 歐拉函數

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1035  Solved: 669[Submit][S ...

  4. Bzoj 2705: [SDOI2012]Longge的问题 欧拉函数,数论

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1959  Solved: 1229[Submit][ ...

  5. BZOJ 2705: [SDOI2012]Longge的问题( 数论 )

    T了一版....是因为我找质因数的姿势不对... 考虑n的每个因数对答案的贡献. 答案就是 ∑ d * phi(n / d) (d | n) 直接枚举n的因数然后求phi就行了. 但是我们可以做的更好 ...

  6. [bzoj]2705: [SDOI2012]Longge的问题[数论][数学][欧拉函数][gcd]

    [bzoj]P2705 OR [luogu]P2303 Longge的问题 Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需 ...

  7. bzoj 2705: [SDOI2012]Longge的问题——欧拉定理

    Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Input 一 ...

  8. BZOJ 2705 [SDOI2012]Longge的问题(欧拉函数)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2705 [题目大意] 求出∑gcd(i,N)(1<=i<=N) [题解] $ ...

  9. [bzoj 2705][SDOI2012]Longge的问题(数学)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2705 分析: 设k为n的因数 设f[k]为gcd(x,n)==k的x的个数,容易知道a ...

随机推荐

  1. xmpp整理笔记:聊天信息的发送与显示

    任何一个信息的发送都需要关注两个部分,信息的发出,和信息在界面中的显示 往期回顾: xmpp整理笔记:环境的快速配置(附安装包)  http://www.cnblogs.com/dsxniubilit ...

  2. phonegap创建的ios项目推送消息出现闪退现象

    使用phonegap创建的ios项目,推送消息时,当程序在前台运行或者在后台运行状态下,推送消息过来,可以解析并且跳转: 但是在程序从后台退出的状态下,当消息推送过来的时候,点击通知栏,打开程序,程序 ...

  3. 安卓--shape简单使用

    shape 先看下,系统自带的EditText和Button的外形 下面看加了shape后的效果 简单点讲,shape可以为组件加上背景边框,圆角之类的可以配合selector使用 shapeXXX. ...

  4. 关于学习YYKit的记录

    <1>遇到的问题 <1>使用@[].mutableCopy创建可变数组 代码出处:YYKitDemo-> YYRootViewController 源代码:self.ti ...

  5. Jquery mobile 中在列表项上使用单选按钮

      无意中发现可以在li上实现开关按钮 http://jsfiddle.net/Gajotres/pzfr2/                 触类旁通,终于实现了在li上增加单选按钮组   @mod ...

  6. android Gui系统之WMS(2)----窗口的添加

    Android系统很多,但是最常用的就两类,一类是有系统进场管理的,系统窗口.还有一类就是由应用程序产生的,应用窗口. 1.系统窗口的添加流程 1.1 addStatusBarWindow Phone ...

  7. 试用 Nexus OSS 3.0 的docker仓库 (二)

    试用 Nexus OSS 3.0 的docker仓库 (一) : http://www.cnblogs.com/wzy5223/p/5410990.html 三. 创建docker私有仓库,docke ...

  8. 每日Scrum(9)

    今天我们小组进行了软件的测试和界面的美化,特别是在主界面美化方面下了一些功夫,找了很多图片,把格式也处理的很完美,符合界面的一个框架,看起来,美观多了,至此,软件的beta版是基本完成了.

  9. 从MVC框架看MVC架构的设计

    尽管MVC早已不是什么新鲜话题了,但是从近些年一些优秀MVC框架的设计上,我们还是会发现MVC在架构设计上的一些新亮点.本文将对传统MVC架构中的一些弊病进行解读,了解一些优秀MVC框架是如何化解这些 ...

  10. 转载 sql 存储过程与函数区别

    SQL Server用户自定义函数和存储过程有类似的功能,都可以创建捆绑SQL语句,存储在server中供以后使用.这样能够极大地提高工作效率,通过以下的各种做法可以减少编程所需的时间: 重复使用编程 ...