论文阅读之:Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
2016.10.23
摘要:本文针对传统超分辨方法中存在的结果过于平滑的问题,提出了结合最新的对抗网络的方法,得到了不错的效果。并且针对此网络结构,构建了自己的感知损失函数。先上一张图,展示下强大的结果:

Contributions:
GANs 提供了强大的框架来产生高质量的 plausible-looking natural images。本文提供了一个 very deep ResNet architure,利用 GANs 的概念,来形成一个 perceptual loss function 来靠近 human perception 来做 photo-realistic SISR。
主要贡献在于:
1. 对于 image SR 来说,我们取得了新的顶尖效果,降低 4倍的分辨率,衡量标准为:PSNR 和 structure similarity (SSIM)。具体的来说,我们首先采用 fast feature learning in LR space and batch-normalization 来进行训练残差网络。
2. 提出了结合 content loss 和 adversarial loss 作为我们的 perceptual loss。

Method:
首先是几个概念:
super solved image $I_{SR}$: W * H * C ; low-resolution input image $I_{LR}$: rW * rH * C ; high-resolution image $I_{HR}$ : rW * rH * C.
我们的终极目标是:训练一个产生式函数 G 能够预测给定的输入图像 LR input image 的 HR 部分。我们达到这个目的,我们训练一个 generator network 作为一个 feed-forward CNN $G_{\theta_{G}}$ 参数为 $\theta_{G}$ , 此处的 $\theta_{G} = {W_{1:L} ; b_{1:L}}$ 表示一个 L 层 deep network 的 weights 和 biases,并且是通过优化一个 SR-specific loss function $l^{SR}$ 得到的。对于一个给定的 训练图像 $I^{HR_{n}}$ ,n = 1,...,N 对应的低分辨率图像为:$I^{LR}_n$ ,我们优化下面这个问题:

1. Adversarial Network Architecture
产生式对抗网络的训练学习目标是一个 minmax problem :

作者也将图像超分辨看作是这么一个过程。通过 generator 产生一张超分辨图像,使得 discriminator 难以区分。

上图就是本文所涉及的大致流程。
2. Perceptual Loss Function
本文所设计的感知损失函数 是本文算法性能的保证。
2.1. Content Loss
像素级 MSE Loss 的计算为:

这个是最经常使用的优化目标。但是,这种方式当取得较高的 PSNR的同时,MSE 优化问题导致缺乏 high-frequency content,这就会使得结果太过于平滑(overly smooth solutions)。如图2 所示:

我们对此做了改进,在 pre-trained 19-layer VGG network 的 ReLU activation layers 的基础上,定义了 VGG loss 。
我们用 $\phi_{i,j}$ 表示 VGG19 network 当中,第 i-th max pooling layer 后的 第 j-th 卷积得到的 feature map。然后定义 the VGG loss 作为重构图像 和 参考图像之间的欧氏距离 :

其中,$W_{i, j}$ and $H_{i, j}$ 表示了 VGG network 当中相应的 feature maps 的维度。
2.2. Adversarial Loss
在所有训练样本上,基于判别器的概率定义 generative loss :

此处,D 是重构图像是 natural HR image 的概率。
2.3. Regulatization Loss
我们进一步的采用 基于 total variation 的正则化项 来鼓励 spatially coherent solutions。正则化损失的定义为:

3. Experiments



总结 : 本文给出了一种比较直观的利用 产生式对抗网络的方法,结合 GANs 的比较好的应用到 Super-Resolution 上。
主要是利用了 GANs 可以创造新的图像的能力。

论文阅读之:Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network的更多相关文章
- 论文阅读:Single Image Dehazing via Conditional Generative Adversarial Network
Single Image Dehazing via Conditional Generative Adversarial Network Runde Li∗ Jinshan Pan∗ Zechao L ...
- ASRWGAN: Wasserstein Generative Adversarial Network for Audio Super Resolution
ASEGAN:WGAN音频超分辨率 这篇文章并不具有权威性,因为没有发表,说不定是外国的某个大学的毕业设计,或者课程结束后的作业.或者实验报告. CS230: Deep Learning, Sprin ...
- Speech Super Resolution Generative Adversarial Network
博客作者:凌逆战 博客地址:https://www.cnblogs.com/LXP-Never/p/10874993.html 论文作者:Sefik Emre Eskimez , Kazuhito K ...
- Face Aging with Conditional Generative Adversarial Network 论文笔记
Face Aging with Conditional Generative Adversarial Network 论文笔记 2017.02.28 Motivation: 本文是要根据最新的条件产 ...
- 【论文学习】A Fuzzy-Rule-Based Approach for Single Frame Super Resolution
加尔各答印度统计研究所,作者: Pulak Purkait (pulak_r@isical.ac.in) 2013 年 代码:CodeForge.cn http://www.codeforge.cn/ ...
- 《MIDINET: A CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORK FOR SYMBOLIC-DOMAIN MUSIC GENERATION》论文阅读笔记
出处 arXiv.org (引用量暂时只有3,too new)2017.7 SourceCode:https://github.com/RichardYang40148/MidiNet Abstrac ...
- CSAGAN:LinesToFacePhoto: Face Photo Generation from Lines with Conditional Self-Attention Generative Adversarial Network - 1 - 论文学习
ABSTRACT 在本文中,我们探讨了从线条生成逼真的人脸图像的任务.先前的基于条件生成对抗网络(cGANs)的方法已经证明,当条件图像和输出图像共享对齐良好的结构时,它们能够生成视觉上可信的图像.然 ...
- 生成对抗网络(Generative Adversarial Network)阅读笔记
笔记持续更新中,请大家耐心等待 首先需要大概了解什么是生成对抗网络,参考维基百科给出的定义(https://zh.wikipedia.org/wiki/生成对抗网络): 生成对抗网络(英语:Gener ...
- DeepPrivacy: A Generative Adversarial Network for Face Anonymization阅读笔记
DeepPrivacy: A Generative Adversarial Network for Face Anonymization ISVC 2019 https://arxiv.org/pdf ...
随机推荐
- sublime text3 快捷方式汇总
sublime text. 用过的都给赞, 哈哈-- 下面是快捷方式汇总啦: 选择类: Ctrl+D 选中光标所占的文本,继续操作则会选中下一个相同的文本. Alt+F3 选中文本按下快捷键,即可一次 ...
- for_each使用方法详解[转]
for_each使用方法详解[转] Abstract之前在(原創) 如何使用for_each() algorithm? (C/C++) (STL)曾經討論過for_each(),不過當時功力尚淺,只談 ...
- Android之源码之模块编译和调试
Android之源码之模块编译调试 (一) 进行源码模块修改进行编译的调试 1.首先是从git或者svn上拉一套完整的工程下来,然后全编一下,一般这个时间比较长,大概会得2,3个小时左右, 2,编译成 ...
- java环境变量设定
1.打开我的电脑--属性--高级--环境变量 2.新建系统变量JAVA_HOME 和CLASSPATH 变量名:JAVA_HOME 变量值:C:\Program Files\Java\jdk1.7.0 ...
- jquery插件开发基础入门
jquery插件开发基础入门 入门 编写一个jquery插件开始于给jquery.fn加入新的功能属性,此处添加的对象属性的名称就是你的插件名称 jQuery.fn,myPlugin = functi ...
- 查看Msi文件内容
1通过msiexec命令解压msi包 msiexec.exe /a c:\msi\installer.msi /qb targetdir=d:\msi\installer 2 使用Orca查看. Or ...
- 【转载】JSP常用跳转方式
转自:http://blog.csdn.net/wanghuan203/article/details/8836326 (1)href超链接标记,属于客户端跳转 (2)使用javascript完成,属 ...
- adobe cc 2015安装步骤
- ssh下:系统初始化实现ServletContextListener接口时,获取spring中数据层对象无效的问题
想要实现的功能:SSH环境下,数据层都交由Spring管理:在服务启动时,将数据库中的一些数据加载到ServletContext中缓存起来. 系统初始化类需要实现两个接口: ServletContex ...
- Html=>Head=>meta
如今智能机遍布大街小巷,所以,如今的前端攻城师们要大 跨步的迈向移动互联网了,更何况Web App也应用广泛,可能原理还一样,但是一定会有新的东西出现,那就从“头”开始,看看头部那些Meta的新玩意. ...