压缩感知重构算法之OMP算法python实现

压缩感知重构算法之CoSaMP算法python实现

压缩感知重构算法之SP算法python实现

压缩感知重构算法之IHT算法python实现

压缩感知重构算法之OLS算法python实现

压缩感知重构算法之IRLS算法python实现

算法流程

算法分析

python代码

要利用python实现,电脑必须安装以下程序

  • python (本文用的python版本为3.5.1)
  • numpy python包(本文用的版本为1.10.4)
  • scipy python包(本文用的版本为0.17.0)
  • pillow python包(本文用的版本为3.1.1)
#coding:utf-8
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# DCT基作为稀疏基,重建算法为CoSaMP算法,图像按列进行处理
# 参考文献: D. Deedell andJ. Tropp, “COSAMP: Iterative Signal Recovery from
#Incomplete and Inaccurate Samples,” 2008.
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #导入集成库
import math # 导入所需的第三方库文件
import numpy as np #对应numpy包
from PIL import Image #对应pillow包 #读取图像,并变成numpy类型的 array
im = np.array(Image.open('lena.bmp'))#图片大小256*256 #生成高斯随机测量矩阵
sampleRate=0.5 #采样率
Phi=np.random.randn(256*sampleRate,256)
# Phi=np.random.randn(256,256)
# u, s, vh = np.linalg.svd(Phi)
# Phi = u[:256*sampleRate,] #将测量矩阵正交化 #生成稀疏基DCT矩阵
mat_dct_1d=np.zeros((256,256))
v=range(256)
for k in range(0,256):
dct_1d=np.cos(np.dot(v,k*math.pi/256))
if k>0:
dct_1d=dct_1d-np.mean(dct_1d)
mat_dct_1d[:,k]=dct_1d/np.linalg.norm(dct_1d) #随机测量
img_cs_1d=np.dot(Phi,im) #CoSaMP算法函数
def cs_CoSaMP(y,D):
S=math.floor(y.shape[0]/4) #稀疏度
residual=y #初始化残差
pos_last=np.array([],dtype=np.int64)
result=np.zeros((256)) for j in range(S): #迭代次数
product=np.fabs(np.dot(D.T,residual))
pos_temp=np.argsort(product)
pos_temp=pos_temp[::-1]#反向,得到前面L个大的位置
pos_temp=pos_temp[0:2*S]#对应步骤3
pos=np.union1d(pos_temp,pos_last) result_temp=np.zeros((256))
result_temp[pos]=np.dot(np.linalg.pinv(D[:,pos]),y) pos_temp=np.argsort(np.fabs(result_temp))
pos_temp=pos_temp[::-1]#反向,得到前面L个大的位置
result[pos_temp[:S]]=result_temp[pos_temp[:S]]
pos_last=pos_temp
residual=y-np.dot(D,result) return result #重建
sparse_rec_1d=np.zeros((256,256)) # 初始化稀疏系数矩阵
Theta_1d=np.dot(Phi,mat_dct_1d) #测量矩阵乘上基矩阵
for i in range(256):
print('正在重建第',i,'列。。。')
column_rec=cs_CoSaMP(img_cs_1d[:,i],Theta_1d) #利用CoSaMP算法计算稀疏系数
sparse_rec_1d[:,i]=column_rec;
img_rec=np.dot(mat_dct_1d,sparse_rec_1d) #稀疏系数乘上基矩阵 #显示重建后的图片
image2=Image.fromarray(img_rec)
image2.show()

matlab代码

function Demo_CS_CoSaMP()
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% the DCT basis is selected as the sparse representation dictionary
% instead of seting the whole image as a vector, I process the image in the
% fashion of column-by-column, so as to reduce the complexity. % Author: Chengfu Huo, roy@mail.ustc.edu.cn, http://home.ustc.edu.cn/~roy
% Reference: D. Deedell andJ. Tropp, “COSAMP: Iterative Signal Recovery from
% Incomplete and Inaccurate Samples,” 2008.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %------------ read in the image --------------
img=imread('lena.bmp'); % testing image
img=double(img);
[height,width]=size(img); %------------ form the measurement matrix and base matrix ---------------
Phi=randn(floor(height/2),width); % only keep one third of the original data
Phi = Phi./repmat(sqrt(sum(Phi.^2,1)),[floor(height/2),1]); % normalize each column mat_dct_1d=zeros(256,256); % building the DCT basis (corresponding to each column)
for k=0:1:255
dct_1d=cos([0:1:255]'*k*pi/256);
if k>0
dct_1d=dct_1d-mean(dct_1d);
end;
mat_dct_1d(:,k+1)=dct_1d/norm(dct_1d);
end %--------- projection ---------
img_cs_1d=Phi*img; % treat each column as a independent signal %-------- recover using omp ------------
sparse_rec_1d=zeros(height,width);
Theta_1d=Phi*mat_dct_1d;
for i=1:width
column_rec=cs_cosamp(img_cs_1d(:,i),Theta_1d,height);
sparse_rec_1d(:,i)=column_rec'; % sparse representation
end
img_rec_1d=mat_dct_1d*sparse_rec_1d; % inverse transform %------------ show the results --------------------
figure(1)
subplot(2,2,1),imagesc(img),title('original image')
subplot(2,2,2),imagesc(Phi),title('measurement mat')
subplot(2,2,3),imagesc(mat_dct_1d),title('1d dct mat')
psnr = 20*log10(255/sqrt(mean((img(:)-img_rec_1d(:)).^2)));
subplot(2,2,4),imshow(uint8(img_rec_1d));
title(strcat('PSNR=',num2str(psnr),'dB'));
disp('over') %************************************************************************%
function hat_x=cs_cosamp(y,T_Mat,m)
% y=T_Mat*x, T_Mat is n-by-m
% y - measurements
% T_Mat - combination of random matrix and sparse representation basis
% m - size of the original signal
% the sparsity is length(y)/4 n=length(y); % length of measurements
s=floor(n/4); % sparsity
r_n=y; % initial residuals sig_pos_lt=[]; % significant pos for last time iteration for times=1:s % number of iterations product=abs(T_Mat'*r_n);
[val,pos]=sort(product,'descend');
sig_pos_cr=pos(1:2*s); % significant pos for curretn iteration sig_pos=union(sig_pos_cr,sig_pos_lt); Aug_t=T_Mat(:,sig_pos); % current selected entries of T_Mat aug_x_cr=zeros(m,1);
aug_x_cr(sig_pos)=(Aug_t'*Aug_t)^(-1)*Aug_t'*y; % temp recovered x (sparse) [val,pos]=sort(abs(aug_x_cr),'descend'); hat_x=zeros(1,m);
hat_x(pos(1:s))=aug_x_cr(pos(1:s));% recovered x with s sparsity sig_pos_lt=pos(1:s); % refresh the significant positions r_n=y-T_Mat*hat_x';
end

参考文献

1、D. Deedell andJ. Tropp, “COSAMP: Iterative Signal Recovery from Incomplete and Inaccurate Samples,” 2008.

欢迎python爱好者加入:学习交流群 667279387

压缩感知重构算法之CoSaMP算法python实现的更多相关文章

  1. 压缩感知重构算法之IRLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  2. 压缩感知重构算法之OLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  3. 压缩感知重构算法之IHT算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  4. 压缩感知重构算法之SP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  5. 压缩感知重构算法之OMP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  6. 压缩感知重构算法之压缩采样匹配追踪(CoSaMP)

    压缩采样匹配追踪(CompressiveSampling MP)是D. Needell继ROMP之后提出的又一个具有较大影响力的重构算法.CoSaMP也是对OMP的一种改进,每次迭代选择多个原子,除了 ...

  7. 浅谈压缩感知(二十三):压缩感知重构算法之压缩采样匹配追踪(CoSaMP)

    主要内容: CoSaMP的算法流程 CoSaMP的MATLAB实现 一维信号的实验与结果 测量数M与重构成功概率关系的实验与结果 一.CoSaMP的算法流程 压缩采样匹配追踪(CompressiveS ...

  8. 浅谈压缩感知(二十八):压缩感知重构算法之广义正交匹配追踪(gOMP)

    主要内容: gOMP的算法流程 gOMP的MATLAB实现 一维信号的实验与结果 稀疏度K与重构成功概率关系的实验与结果 一.gOMP的算法流程 广义正交匹配追踪(Generalized OMP, g ...

  9. 浅谈压缩感知(二十五):压缩感知重构算法之分段正交匹配追踪(StOMP)

    主要内容: StOMP的算法流程 StOMP的MATLAB实现 一维信号的实验与结果 门限参数Ts.测量数M与重构成功概率关系的实验与结果 一.StOMP的算法流程 分段正交匹配追踪(Stagewis ...

随机推荐

  1. mysql update获取主键

    mysql update获取主键<pre>SET @update_id := 0;UPDATE mobantestinfo1 SET info2 = 'value', id = (SELE ...

  2. 关于Jvm的见解(二)

    栈管运行,堆管存储!!! 栈呢,也叫作栈内存,主要管java程序的运行,在线程创建时创建,生命周期和线程一致,只要线程一结束,该栈就被GC,是线程私有的.基本类型的变量和对象的引用数据类型的变量都在栈 ...

  3. Golang stackError 补充go错误定位能力

    用过go的都知道,go的error实现很简单,errors.New实现的error类并不存储堆栈数据,这导致一个问题,就是多次error return后,或panic后recover了,找不到触发异常 ...

  4. jvm与程序的生命周期

    yls 2019/11/5 java虚拟机结束生命周期的情况: 执行了System.exit(); 程序正常运行结束 程序在执行过程中遇到异常或错误而异常终止 由于操作系统出现错误而导致jvm进程终止 ...

  5. JS 原生面经从入门到放弃 篇幅较长,建议收藏

    前言 是时候撸一波 JS 基础啦,撸熟了,银十速拿 offer; 本文不从传统的问答方式梳理,而是从知识维度梳理,以便形成知识网络; 包括函数,数组,对象,数据结构,算法,设计模式和 http. 函数 ...

  6. 图片转换成base64预览

    来源:https://developer.mozilla.org/zh-CN/docs/Web/API/FileReader/readAsDataURL 真心不错写得,思路比较清晰.已经测试过 注意: ...

  7. [第二章]了解storm

    1.什么是storm Apache Storm is a free and open source distributed realtime computation system. 免费.开源.分布式 ...

  8. [springboot 开发单体web shop] 7. 多种形式提供商品列表

    上文回顾 上节 我们实现了仿jd的轮播广告以及商品分类的功能,并且讲解了不同的注入方式,本节我们将继续实现我们的电商主业务,商品信息的展示. 需求分析 首先,在我们开始本节编码之前,我们先来分析一下都 ...

  9. 安装win7和ubuntu16.04双系统

    硬件:2012年本子  话硕A55V Service 准备: 首先通过一键还原备份win7系统!不清楚某些失误会不会备份也不能拯救! 清出100g硬盘空间,ubuntu会安装在这里 查看当前win7启 ...

  10. man 与 help

    man帮助文档被划分为节 序号 节号 说明 1 1 命令帮助信息 2 2 系统调用函数的帮助信息(内核提供的接口函数) 3 3 库函数帮助信息 4 4 设备文件帮助信息 5 5 配置文档帮助说明 6 ...