题目描述

跟所有人一样,农夫约翰以着宁教我负天下牛,休叫天下牛负我的伟大精神,日日夜夜苦思生 财之道。为了发财,他设置了一系列的规章制度,使得任何一只奶牛在农场中的道路行走,都 要向农夫约翰上交过路费。 农场中由N(1 <= N <= 250)片草地(标号为1到N),并且有M(1 <= M <= 10000)条 双向道路连接草地A_j和B_j(1 <= A_j <= N; 1 <= B_j <= N)。奶牛们从任意一片草 地出发可以抵达任意一片的草地。FJ已经在连接A_j和B_j的双向道路上设置一个过路费L_j (1 <= L_j <= 100,000)。 可能有多条道路连接相同的两片草地,但是不存在一条道路连接一片草地和这片草地本身。最 值得庆幸的是,奶牛从任意一篇草地出发,经过一系列的路径,总是可以抵达其它的任意一片 草地。 除了贪得无厌,叫兽都不知道该说什么好。FJ竟然在每片草地上面也设置了一个过路费C_i (1 <= C_i <= 100000)。从一片草地到另外一片草地的费用,是经过的所有道路的过路 费之和,加上经过的所有的草地(包括起点和终点)的过路费的最大值。 任劳任怨的牛们希望去调查一下她们应该选择那一条路径。她们要你写一个程序,接受K(1 <= K <= 10,000)个问题并且输出每个询问对应的最小花费。第i个问题包含两个数字s_i 和t_i(1 <= s_i <= N; 1 <= t_i <= N; s_i != t_i),表示起点和终点的草地。 考虑下面这个包含5片草地的样例图像:  从草地1到草地3的道路的“边过路费”为3,草地2的“点过路费”为5。 要从草地1走到草地4,可以从草地1走到草地3再走到草地5最后抵达草地4。如果这么走的话, 需要的“边过路费”为2+1+1=4,需要的点过路费为4(草地5的点过路费最大),所以总的花 费为4+4=8。 而从草地2到草地3的最佳路径是从草地2出发,抵达草地5,最后到达草地3。这么走的话,边 过路费为3+1=4,点过路费为5,总花费为4+5=9。

输入

* 第1行: 三个空格隔开的整数: N, M和K * 第2到第N+1行: 第i+1行包含一个单独的整数: C_i * 第N+2到第N+M+1行: 第j+N+1行包含3个由空格隔开的整数: A_j, B_j和L_j * 第N+M+2倒第N+M+K+1行: 第i+N+M+1行表示第i个问题,包含两个由空格隔开的整数s_i 和t_i

输出

* 第1到第K行: 第i行包含一个单独的整数,表示从s_i到t_i的最小花费。

样例输入

5 7 2
2
5
3
3
4
1 2 3
1 3 2
2 5 3
5 3 1
5 4 1
2 4 3
3 4 4
1 4
2 3

样例输出

8
9
 
这道题明显是最短路,数据范围n<=250,一看就是floyd,但和一般最短路不一样的是这个最短路还要加一个路径最大点权。在这里介绍两种做法。
一、这种做法比较玄学(感觉有种骗分的感觉),记录路径最大点权g[i][j],和路径最短路(包括最大路径点权)f[i][j]。然后边正常floyd边更新这两个数组。这样跑一遍floyd显然不会将所有情况都更新成最优解,因此要跑多次,这样可以最大限度更新最优解,几乎是卡不掉的。
附上代码。
#include<queue>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int n,m,q;
int f[260][260];
int g[260][260];
int w[260];
int x,y,v;
void floyd()
{
for(int k=1;k<=n;k++)
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(i==j||i==k||j==k)
{
continue;
}
if(f[i][j]>f[i][k]+f[k][j]-min(g[i][k],g[k][j]))
{
f[i][j]=f[i][k]+f[k][j]-min(g[i][k],g[k][j]);
g[i][j]=max(g[i][k],g[k][j]);
}
}
}
}
}
int main()
{
memset(f,0x7f7f7f7f,sizeof(f));
memset(g,0x7f7f7f7f,sizeof(g));
scanf("%d%d%d",&n,&m,&q);
for(int i=1;i<=n;i++)
{
scanf("%d",&w[i]);
g[i][i]=0;
}
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&x,&y,&v);
if(f[x][y]>v+max(w[x],w[y]))
{
f[x][y]=v+max(w[x],w[y]);
f[y][x]=f[x][y];
g[x][y]=max(w[x],w[y]);
g[y][x]=g[x][y];
}
}
floyd();
floyd();
floyd();
for(int i=1;i<=q;i++)
{
scanf("%d%d",&x,&y);
printf("%d\n",f[x][y]);
}
}  

二、这才是正常做法。因为要最大点权,所以考虑将点权从小到大排序然后枚举中间点,这样就能保证这个中间点是除了两端点之外最大的。开两个数组分别表示不计路径最大点权的最短路长度和计路径最大点权的最短路长度然后跑一遍floyd就可以了。

附上代码。

#include<queue>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int n,m,q;
int f[260][260];
int g[260][260];
int r[260];
struct node
{
int num;
int sum;
}a[260];
int x,y,v;
int cmp(node x,node y)
{
if(x.sum!=y.sum)
{
return x.sum<y.sum;
}
return x.num<y.num;
}
int main()
{
memset(g,0x3f,sizeof(g));
memset(f,0x3f,sizeof(f));
scanf("%d%d%d",&n,&m,&q);
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i].sum);
a[i].num=i;
}
sort(a+1,a+1+n,cmp);
for(int i=1;i<=n;i++)
{
r[a[i].num]=i;
g[i][i]=0;
}
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&x,&y,&v);
g[r[x]][r[y]]=g[r[y]][r[x]]=min(g[r[x]][r[y]],v);
}
for(int k=1;k<=n;k++)
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(i==j)
{
continue;
}
g[i][j]=min(g[i][j],g[i][k]+g[k][j]);
f[i][j]=min(f[i][j],g[i][j]+max(a[i].sum,max(a[j].sum,a[k].sum)));
}
}
}
for(int i=1;i<=q;i++)
{
scanf("%d%d",&x,&y);
printf("%d\n",f[r[x]][r[y]]);
}
}

BZOJ1774[USACO 2009 Dec Gold 2.Cow Toll Paths]——floyd的更多相关文章

  1. BZOJ1775[USACO 2009 Dec Gold 3.Video Game Troubles]——DP

    题目描述 输入 * 第1行: 两个由空格隔开的整数: N和V * 第2到第N+1行: 第i+1行表示第i种游戏平台的价格和可以在这种游戏平台上面运行的游 戏.包含: P_i, G_i还有G_i对由空格 ...

  2. [USACO 2017 Dec Gold] Tutorial

    Link: USACO 2017 Dec Gold 传送门 A: 为了保证复杂度明显是从终结点往回退 结果一开始全在想优化建边$dfs$……其实可以不用建边直接$multiset$找可行边跑$bfs$ ...

  3. NC24866 [USACO 2009 Dec S]Music Notes

    NC24866 [USACO 2009 Dec S]Music Notes 题目 题目描述 FJ is going to teach his cows how to play a song. The ...

  4. P2966 [USACO09DEC]牛收费路径Cow Toll Paths

    P2966 [USACO09DEC]牛收费路径Cow Toll Paths 题目描述 Like everyone else, FJ is always thinking up ways to incr ...

  5. P2966 [USACO09DEC]Cow Toll Paths G

    题意描述 Cow Toll Paths G 这道题翻译的是真的不错,特别是第一句话 给定一张有 \(n\) 个点 \(m\) 条边的无向图,每条边有边权,每个点有点权. 两点之间的路径长度为所有边权 ...

  6. usaco 过路费 Cow Toll Paths, 2009 Dec

    Description 翰家有 N 片草地,编号为 1 到 N ,彼此之间由 M 条双向道路连接,第 i 条道路连接了 Ai 和Bi,两片草地之间可能有多条道路,但没有道路会连接同一片草地,现有的道路 ...

  7. USACO 2009 Dec cow toll paths 过路费-floyd

    这道题首先要明确一点,那就是当你从一个点走到自己时,也是需要花费这个点点权值的费用.这个点卡了我两次QWQ 然后我比较喜欢分两步搞: 首先,我们利用floyd的一个性质:就是在更新其他点之间的路线时要 ...

  8. [USACO 2011 Dec Gold] Cow Calisthenics【二分】

    Problem 1: Cow Calisthenics [Michael Cohen, 2010] Farmer John continues his never-ending quest to ke ...

  9. [USACO 2009 Feb Gold] Fair Shuttle (贪心+优先队列)

    题目大意:有N个站点的轻轨站,有一个容量为C的列车起点在1号站点,终点在N号站点,有K组牛群,每组数量为Mi(1≤Mi≤N),行程起点和终点分别为Si和Ei(1≤Si<Ei≤N).计算最多有多少 ...

随机推荐

  1. [04] 高级映射 association和collection

    之前我们提到的映射,都是简单的字段和对象属性一对一,假设对象的属性也是一个对象,即涉及到两个表的关联,此时应该如何进行映射处理? 先看两张表,author 和 book:    业务上对应关系为,一个 ...

  2. CentOS7.4,anaconda3,python3.6,tensorflow环境下gdal的编译和问题解决

    CentOS7.4,anaconda3,python3.6,tensorflow环境下gdal的编译和问题解决 这是gdal可能会用到的额外的包,按自己需要先提前编译. 这里的话我主要用了proj,L ...

  3. ant+Jacoco 统计tomcat远程部署后项目接口自动化测试或者功能测试代码覆盖率

    1.安装ant 环境,https://ant.apache.org/bindownload.cgi 2.下载jacoco包  https://www.eclemma.org/jacoco/ ,解压后, ...

  4. NB-IOT_BC95_B5常用AT指令集

    .AT+<cmd>=? 测试命令,用于向模块询问支持的设置项目. .AT+<cmd>? 读取命令,用于让模块上报某个命令代表的设置项当前的值. .AT+<cmd>= ...

  5. Openstack部署踩坑

    第一周: 使用kola部署Openstack,vip_address有问题,双网上也不行,就是部署不了,但all-in-one却可以,可是节点不会加. 第二周: 使用Packstack部署Openst ...

  6. Puppet常识梳理

    Puppet简单介绍 1)puppet是一种Linux/Unix平台下的集中配置管理系统,使用自有的puppet描述语言,可管理配置文件.用户.cron任务.软件包.系统服务等.puppet把这些系统 ...

  7. Python-集合-17

    ''' 集合:可变的数据类型,他里面的元素必须是不可变的数据类型,无序,不重复. {} ''' set1 = set({1,2,3}) # set2 = {1,2,3,[2,3],{'name':'a ...

  8. .apply()用法和call()的区别

    Js apply方法详解我在一开始看到javascript的函数apply和call时,非常的模糊,看也看不懂,最近在网上看到一些文章对apply方法和call的一些示例,总算是看的有点眉目了,在这里 ...

  9. #个人博客作业Week1——浏览教材后提出的六个问题及软件与软件工程的提出。

    1.通常,我们阅读软件比编写软件花费的时间更多.正因为编写软件比阅读软件要容易,因此代码的可读性显得尤为重要.那么我们在写程序时应该如何避免多余的,带有误导性的注释,写出一个利于帮助别人读懂程序的注释 ...

  10. linux及安全第八周总结

    进程的调度时机与进程的切换 操作系统原理中介绍了大量进程调度算法,这些算法从实现的角度看仅仅是从运行队列中选择一个新进程,选择的过程中运用了不同的策略而已. 对于理解操作系统的工作机制,反而是进程的调 ...