OFRecord 数据集加载
OFRecord 数据集加载
在数据输入一文中知道了使用 DataLoader 及相关算子加载数据,往往效率更高,并且学习了如何使用 DataLoader 及相关算子。
在 OFrecord 数据格式中,学习了 OFRecord 文件的存储格式。
本文,将围绕 OneFlow 的 OFRecord 数据集的加载与制作展开,主要包括:
- OFRecord 数据集的组织形式
- 加载 OFRecord 数据集的多种方式
- OFRecord 数据集与其它数据格式的相互转化
什么是OFRecord数据集
在 OFrecord 数据格式中已经介绍过 OFRecord 文件 的存储格式,知道了什么是 OFRecord文件。
OFRecord 数据集是 OFRecord 文件的集合 。将多个 OFRecord文件,按照 OneFlow 约定的文件名格式,存放在同一个目录中,就得到了 OFRecord 数据集。
默认情况下,OFRecord 数据集目录中的文件,统一以 part-xxx 的方式命名,其中的 "xxx" 是从0开始的文件编号,有补齐和不补齐两种选择。
以下是没有采用补齐的命名风格示例:
mnist_kaggle/train/
├── part-0
├── part-1
├── part-10
├── part-11
├── part-12
├── part-13
├── part-14
├── part-15
├── part-2
├── part-3
├── part-4
├── part-5
├── part-6
├── part-7
├── part-8
└── part-9
以下是有补齐的命名风格:
mnist_kaggle/train/
├── part-00000
├── part-00001
├── part-00002
├── part-00003
├── part-00004
├── part-00005
├── part-00006
├── part-00007
├── part-00008
├── part-00009
├── part-00010
├── part-00011
├── part-00012
├── part-00013
├── part-00014
├── part-00015
OneFlow 采用此约定,与 spark 的默认存储的文件名一致,方便使用 spark 制作与转化 OFRecord 数据。
实际上,文件名前缀(part-)、文件名编号是否补齐、按多少位补齐,均可以自行指定,只需要在加载数据集(下文会介绍)时,保持相关参数一致即可。
OneFlow 提供了加载 OFRecord 数据集的接口,使得只要指定数据集目录的路径,就可以享受 OneFlow 框架所带来的多线程、数据流水线等优势。
加载OFRecord数据集的方法
使用 ofrecord_reader 加载并预处理数据集。
在数据输入一文中,已经展示了如何使用 ofrecord_reader 接口加载 OFRecord 数据,并进行数据预处理。
ofrecord_reader 的接口如下:
def ofrecord_reader(
ofrecord_dir,
batch_size=1,
data_part_num=1,
part_name_prefix="part-",
part_name_suffix_length=-1,
random_shuffle=False,
shuffle_buffer_size=1024,
shuffle_after_epoch=False,
name=None,
)
- ofrecord_dir 指定存放数据集的目录路径
- batch_size 指定每轮读取的 batch 大小
- data_part_num 指定数据集目录中一共有多少个 ofrecord 格式的文件,如果这个数字大于真实存在的文件数,会报错
- part_name_prefix 指定 ofrecord 文件的文件名前缀, OneFlow 根据前缀+序号在数据集目录中定位 ofrecord 文件
- part_name_suffix_length 指定 ofrecord 文件的序号的对齐长度,-1表示不用对齐
- random_shuffle 表示读取时是否需要随机打乱样本顺序
- shuffle_buffer_size 指定了读取样本的缓冲区大小
- shuffle_after_epoch 表示每轮读取完后是否需要重新打乱样本顺序
使用 ofrecord_reader 的好处在于, ofrecord_reader 作为一个普通算子,参与 OneFlow 构图优化,并享有 OneFlow 流水线加速。
对于与业务逻辑耦合的特定操作(如解码、解压等),还可以为 ofrecord_reader 定义预处理 op,让程序拥有很高的灵活性和扩展性。
其它格式数据与 OFRecord 数据集的相互转化
参考OFrecord数据格式中 OFRecord 文件的存储格式及本文开头介绍的 OFRecord 数据集的文件名格式约定,完全可以自己制作 OFRecord 数据集。
不过为了更加方便,提供了 Spark 的 jar 包,方便 OFRecord 与常见数据格式(如 TFRecord、json)进行相互转化。
spark 的安装与启动
首先,下载 spark 及 spark-oneflow-connector:
- 在 spark 官网下载spark-2.4.0-bin-hadoop2.7
- 在这里下载 jar 包,spark 需要它来支持 ofrecord 格式
接着,解压 spark-2.4.0-bin-hadoop2.7.tgz,并配置环境变量 SPARK_HOME:
export SPARK_HOME=path/to/spark-2.4.0-bin-hadoop2.7
然后,通过以下命令启动 pyspark shell:
pyspark --master "local[*]"\
--jars spark-oneflow-connector-assembly-0.1.0_int64.jar\
--packages org.tensorflow:spark-tensorflow-connector_2.11:1.13.1
...
Welcome to
____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/__ / .__/\_,_/_/ /_/\_\ version 2.4.0
/_/
Using Python version 3.6.10 (default, May 8 2020 02:54:21)
SparkSession available as 'spark'.
>>>
在启动的 pyspark shell 中,可以完成 OFRecord 数据集与其它数据格式的相互转化。
使用 spark 查看 OFRecord 数据集
使用以下命令可以查看 OFRecord 数据:
spark.read.format("ofrecord").load("file:///path/to/ofrecord_file").show()
默认显示前20条数据:
+--------------------+------+
| images|labels|
+--------------------+------+
|[0.33967614, 0.87...| 2|
|[0.266905, 0.9730...| 3|
|[0.66661334, 0.67...| 1|
|[0.91943026, 0.89...| 6|
|[0.014844197, 0.0...| 6|
|[0.5366513, 0.748...| 4|
|[0.055148937, 0.7...| 7|
|[0.7814437, 0.228...| 4|
|[0.31193638, 0.55...| 3|
|[0.20034336, 0.24...| 4|
|[0.09441255, 0.07...| 3|
|[0.5177533, 0.397...| 0|
|[0.23703437, 0.44...| 9|
|[0.9425567, 0.859...| 9|
|[0.017339867, 0.0...| 3|
|[0.827106, 0.3122...| 0|
|[0.8641392, 0.194...| 2|
|[0.95585227, 0.29...| 3|
|[0.7508129, 0.464...| 4|
|[0.035597708, 0.3...| 9|
+--------------------+------+
only showing top 20 rows
与 TFRecord 数据集的相互转化
以下命令可以将 TFRecord 转化为 OFRecrod:
reader = spark.read.format("tfrecords")
dataframe = reader.load("file:///path/to/tfrecord_file")
writer = dataframe.write.format("ofrecord")
writer.save("file:///path/to/outputdir")
以上代码中的 outputdir 目录会被自动创建,并在其中保存 ofrecord 文件。在执行命令前应保证 outputdir 目录不存在。
此外,还可以使用以下命令,在转化的同时,将数据切分为多个 ofrecord 文件:
reader = spark.read.format("tfrecords")
dataframe = reader.load("file:///path/to/tfrecord_file")
writer = dataframe.repartition(10).write.format("ofrecord")
writer.save("file://path/to/outputdir")
以上命令执行后,在 outputdir 目录下会产生10个 part-xxx 格式的ofrecord文件。
将 OFRecord 文件转为 TFRecord 文件的过程类似,交换读/写方的 format 即可:
reader = spark.read.format("ofrecord")
dataframe = reader.load("file:///path/to/ofrecord_file")
writer = dataframe.write.format("tfrecords")
writer.save("file:///path/to/outputdir")
与 JSON 格式的相互转化
以下命令可以将 JSON 格式数据转为 OFRecord 数据集:
dataframe = spark.read.json("file:///path/to/json_file")
writer = dataframe.write.format("ofrecord")
writer.save("file:///path/to/outputdir")
以下命令将 OFRecord 数据转为 JSON 文件:
reader = spark.read.format("ofrecord")
dataframe = reader.load("file:///path/to/ofrecord_file")
dataframe.write.json("file://path/to/outputdir")
OFRecord 数据集加载的更多相关文章
- 什么是pytorch(4.数据集加载和处理)(翻译)
数据集加载和处理 这里主要涉及两个包:torchvision.datasets 和torch.utils.data.Dataset 和DataLoader torchvision.datasets是一 ...
- PIE SDK 多数据源的复合数据集加载
1. 功能简介 GIS遥感图像数据复合是将多种遥感图像数据融合成一种新的图像数据的技术,是目前遥感应用分析的前沿,PIESDK通过复合数据技术可以将多幅幅影像数据集(多光谱和全色数据)组合成一幅多波段 ...
- tensorflow数据集加载
本篇涉及的内容主要有小型常用的经典数据集的加载步骤,tensorflow提供了如下接口:keras.datasets.tf.data.Dataset.from_tensor_slices(shuffl ...
- [深度学习]-Dataset数据集加载
加载数据集dataloader from torch.utils.data import DataLoader form 自己写的dataset import Dataset train_set = ...
- las数据集加载las数据
引用的类库:ESRI.ArcGIS.GeoDatabaseExtensions 逻辑步骤: 1.创建las数据集(ILasDataset). 2.实例化las数据集的编辑器(ILasDatasetEd ...
- pytorch 加载数据集
pytorch初学者,想加载自己的数据,了解了一下数据类型.维度等信息,方便以后加载其他数据. 1 torchvision.transforms实现数据预处理 transforms.Totensor( ...
- TensorFlow2.0(10):加载自定义图片数据集到Dataset
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px so ...
- [Python]-sklearn模块-机器学习Python入门《Python机器学习手册》-02-加载数据:加载数据集
<Python机器学习手册--从数据预处理到深度学习> 这本书类似于工具书或者字典,对于python具体代码的调用和使用场景写的很清楚,感觉虽然是工具书,但是对照着做一遍应该可以对机器学习 ...
- BW:如何加载和生成自定义的层次结构,在不使用平面文件的SAP业务信息仓库
介绍 通常情况下,报告需要在一个类似树的结构来显示数据.通过启用此特性在SAP BW层次结构.高级数据显示的层次结构的顶层节点.更详细的数据可以向下钻取到的层次结构中的下级节点的可视化. 考虑一个例子 ...
随机推荐
- 01- Python语言简介
Python的简介: 创始人:Guido van Rossum(创始人) 时间:1989年 圣诞节 Python的命名:源于一个喜剧团 Monty Python Python语言排名 目前Python ...
- 硬件篇-04-SLAM移动底盘机械设计
这篇比较水,发出来主要是为了呼应专栏主题,既然是实现,那各个方面都得讲一下不是. 底盘SW模型 淘的,主要是看上了它有弹簧阻尼器,适合野外,抗震,但是这种底盘结构转向起来比较吃力.是再有个全轮 ...
- Vue学习(二)-Vue中组件间传值常用的几种方式
版本说明:vue-cli:3.0 主要分为两类: 1.父子组件间的传值 2.非父子组件间的传值 1.父子组件间传值 父组件向子组件传值 第一种方式: props 父组件嵌套的子组件中,使用v-bind ...
- XML / HTML / XHTML 的区别
目录 HTML XML XHTML HTML HTML(HyperText Markup Language):超文本标记语言,是一种用于创建网页的标准标记语言,是用来格式化并显示数据的 用HTML语法 ...
- UVA10341解方程(二分)
题意: 给你一个方程 F[x] = pe^-x + qsin(x) + rcos(x) + stan(x) + tx^2 + u = 0(0<=p,r<=20,-20<= ...
- 【python】Leetcode每日一题-丑数
[python]Leetcode每日一题-丑数 [题目描述] 给你一个整数 n ,请你判断 n 是否为 丑数 .如果是,返回 true :否则,返回 false . 丑数 就是只包含质因数 2.3 和 ...
- Jenkins+Git的搭建和自动部署
前言 Jenkins在工作中都使用过,之前都是运维去搭建部署,弄好了之后给我一个网址去构建项目就可以了,所以也都是一直没了解过安装过程. 今天在自己的服务器上搭建了一遍,中间有遇到很多坑,特在此归纳总 ...
- 一种巧妙的使用 CSS 制作波浪效果的思路
在之前,我介绍过几种使用纯 CSS 实现波浪效果的方式,关于它们有两篇相关的文章: 纯 CSS 实现波浪效果! 巧用 CSS 实现酷炫的充电动画 本文将会再介绍另外一种使用 CSS 实现的波浪效果,思 ...
- OCR-Form-Tools项目试玩记录(二)产品评测
这是一篇软工课程作业博客 项目 内容 这个作业属于哪个课程 北航2020春软件工程 006班(罗杰.任健 周五) 这个作业的要求在哪里 个人博客作业-软件案例分析 个人课程目标 系统地学习软件工程理论 ...
- 实施CRM系统后 企业客户服务的改变
通过实施CRM客户管理系统,企业的竞争力和盈利能力得到大幅提高.在这个过程中,客户服务不仅能够持续的满足客户的需求,还能够促进客户与企业建立长期的互惠互利的良好客户关系,这也为企业赢得了更多的商机和利 ...