Implicit Neural Representations with Periodic Activation Functions
概
本文提出用\(\sin\)作为激活函数, 并分析该类型的网络应该如何初始化.
主要内容
本文研究如下的网络结构:
\]
即一个用sin作为激活函数的MLP.

为了说明使用sin作为激活函数的好处, 作者首先利用一个简单的例子作为说明, 设想如下的任务:
- \(\Phi\) 以位置坐标\((i, j)\)为输入, 输出\(\Phi(i, j) \in \mathbb{R}^3\)表示该像素点图片的r, g, b;
- \(\Phi\)以一个图片作为训练集, 假设该图片为\(f(i, j) \in \mathbb{R}^3, i = 1,2,\cdots, j = 1,2,\cdots, W\), 则训练集为\(\{(i, j, f(i, j))\}\), 共\(HW\)个坐标点及其对应的目标;
- 通过平方损失\(\tilde{\mathcal{L}} = \sum_i \sum_j \|\Phi(i, j) - f(i, j)\|^2\)训练网络.
上图给了一个例子(既然是灰度图, 我想这时\(\Phi(i, j) \in \mathbb{R}\)), 展示了用不同激活函数得到的\(\Phi(i, j)\)的图, 显然图和原图越接近, 说明拟合能力越强.
特别的, 作者还展示了\(\nabla f(x)\)和\(\Delta f(x)\) (分别用sobel算子和laplacian算子得到的) 和各自网络关于\((i, j)\)的梯度和二阶梯度的比较. 发现只有SIREN是高度一致的(一个很重要的原因是ReLU等分段连续函数二阶导为0).
初始化策略
作者希望每一层(除了第一层)的输入输出的分布是一致的, 这能够让堆叠网络层数变得容易, 加快收敛.
其策略是:
\]
其中\(n\)是输入\(x \in \mathbb{R}^n\)的维度.
但是, 因为\(\sin (wx+b)\)中的\(w\)可以看成是采样频率, 为了保证第一层的采样频率足够高(采样定理), 作者乘上了一个额外的系数:
\]
文中说\(w_0=30\)是一个不错的选择.
同时作者还发现, 该技巧应用于别的层一样有效, 所以干脆所有层都长上面那个样, 同时
\]
作者认为这么做有效是因为关于\(W\)的梯度也乘上了一个因子\(w_0\), 但同时分布不变.
其它的好处
SIREN对于包含梯度问题的处理尤为出色, 这或许应该归功于其导数依然是一个SIREN网络, 而如ReLU的一阶导为常数, 二阶导为0自然无法胜任.

类似的结构, 但是这一次, 假设只知道图片的\(\nabla f(i, j)\)或者\(\Delta f(i, j)\),由此通过
\]
或者
\]
来拟合, 则\(\Phi(i, j)\)依然输出和\(f(i, j)\)相近的结果(如上图左所示).
上图右则是逼近\(\alpha \nabla f_1 (i, j) + ( 1- \alpha) f_2 (i, j)\)
对两张图片进行混合, 得到的\(\Phi(i, j)\)恰为两张图片的融合.
SIREN的强大之处可见一斑.
Implicit Neural Representations with Periodic Activation Functions的更多相关文章
- [CS231n-CNN] Training Neural Networks Part 1 : activation functions, weight initialization, gradient flow, batch normalization | babysitting the learning process, hyperparameter optimization
课程主页:http://cs231n.stanford.edu/ Introduction to neural networks -Training Neural Network ________ ...
- Activation Functions
Sigmoid Sigmoids saturate and kill gradients. Sigmoid outputs are not zero-centered. Exponential fun ...
- Activation Functions and Their Derivatives
1. Sigmoid Function: when z=0,g'(z)=0.25 2. tanh Function: when x=0,tanh'(x)=1 3. Relu
- Activation functions on the Keras
sigmoid tanh tanh函数定义如下: 激活函数形状: ReLU 大家族 ReLU softmax 函数 softmax是一个函数,其主要用于输出节点的分类,它有一个特点,所以的值相加会等于 ...
- 《MATLAB Deep Learning:With Machine Learning,Neural Networks and Artificial Intelligence》选记
一.Training of a Single-Layer Neural Network 1 Delta Rule Consider a single-layer neural network, as ...
- Glossary Collection
目录 直接修饰用 间接强调用 (多为副词) 过渡用 特别的名词 动词 词组 各种介词 句子 摘要 引言 总结 正文 实验 直接修饰用 Word 含义 例句 近义词 nuanced adj. 微妙的:具 ...
- 深度学习材料:从感知机到深度网络A Deep Learning Tutorial: From Perceptrons to Deep Networks
In recent years, there’s been a resurgence in the field of Artificial Intelligence. It’s spread beyo ...
- TensorFlow 常用函数汇总
本文介绍了tensorflow的常用函数,源自网上整理. TensorFlow 将图形定义转换成分布式执行的操作, 以充分利用可用的计算资源(如 CPU 或 GPU.一般你不需要显式指定使用 CPU ...
- TensorFlow 常用函数与方法
摘要:本文主要对tf的一些常用概念与方法进行描述. tf函数 TensorFlow 将图形定义转换成分布式执行的操作, 以充分利用可用的计算资源(如 CPU 或 GPU.一般你不需要显式指定使用 CP ...
随机推荐
- 疯了吧!这帮人居然用 Go 写“前端”?(二)
作者 | 郑嘉涛(羣青) 来源|尔达 Erda 公众号 前言 上篇我们讲了故事发生的背景,也简单阐述了组件及协议的设想: 一.丰富的通用组件库. 二.组件渲染能力,将业务组件渲染成通用组件 ...
- Mybatis相关知识点(一)
MyBatis入门 (一)介绍 MyBatis 本是apache的一个开源项目iBatis, 2010年这个项目由apache software foundation 迁移到了google code, ...
- Spark(十六)【SparkStreaming基本使用】
目录 一. SparkStreaming简介 1. 相关术语 2. SparkStreaming概念 3. SparkStreaming架构 4. 背压机制 二. Dstream入门 1. WordC ...
- 大数据学习day36-----flume02--------1.avro source和kafka source 2. 拦截器(Interceptor) 3. channel详解 4 sink 5 slector(选择器)6 sink processor
1.avro source和kafka source 1.1 avro source avro source是通过监听一个网络端口来收数据,而且接受的数据必须是使用avro序列化框架序列化后的数据.a ...
- [学习总结]6、Android异步消息处理机制完全解析,带你从源码的角度彻底理解
开始进入正题,我们都知道,Android UI是线程不安全的,如果在子线程中尝试进行UI操作,程序就有可能会崩溃.相信大家在日常的工作当中都会经常遇到这个问题,解决的方案应该也是早已烂熟于心,即创建一 ...
- JSP 文字乱码、${}引用无效
问题: 代码:<form action="/test/requestPost.do" method="post"> <input type=& ...
- SQL注入 (1) SQL注入类型介绍
SQL注入 SQL注入介绍与分类 1. 什么是sql注入 通过把SQL命令插入到Web表单提交或输入域名或页面请求的查询字符串,最终达到欺骗服务器执行恶意的SQL命令. 2. sql注入类型 按照注入 ...
- 【手帐】Bullet Journal教程
最近觉得自己的日程记录本有待提高,于是从今年开始开始入坑了手帐. *内容源自Bullet Journal官网.https://bulletjournal.com/pages/learn 快速笔记 Bu ...
- Jenkins多分支构建
目录 一.创建多分支pipeline 二.根据分支部署 gitlab触发与多分支 Generic Webhook多分支 一.创建多分支pipeline 在实际中,需要多分支同时进行开发.如果每个分支都 ...
- 磁盘管理LVM
目录 一.简介 二.操作 环境简介 操作 一.简介 LVM全称为Logical Volume Management,它是Linux环境下对磁盘分区进行管理的一种机制,它可以将多个硬盘合成一个资源池,然 ...