import numpy as np

def loadDataSet():
dataMat = []
labelMat = []
fr = open('D:\\LearningResource\\machinelearninginaction\\Ch05\\testSet.txt')
for line in fr.readlines():
lineArr = line.strip().split()
dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])
labelMat.append(int(lineArr[2]))
return dataMat,labelMat dataMat,labelMat = loadDataSet()
print(dataMat)
print(labelMat)

def sigmoid(z):
sigmoid = 1.0/(1+np.exp(-z))
return sigmoid def gradAscent(dataMatIn, classLabels):
dataMatrix = np.mat(dataMatIn)
labelMat = np.mat(classLabels).transpose()
m,n = np.shape(dataMatrix)
alpha = 0.001
maxCycles = 500
weights = np.ones((n,1))
for k in range(maxCycles):
h = sigmoid(dataMatrix*weights)
error = (labelMat - h)
weights = weights + alpha * dataMatrix.transpose()* error
return weights weights = gradAscent(dataMat,labelMat)
print(weights)

def stocGradAscent0(dataMatrix, classLabels):
m,n = np.shape(dataMatrix)
alpha = 0.01
weights = np.ones(n)
for i in range(m):
h = sigmoid(sum(np.array(dataMatrix[i])*weights))
error = classLabels[i] - h
weights = weights + alpha * error * np.array(dataMatrix[i])
return weights weights = stocGradAscent0(dataMat,labelMat)
print(weights)

def stocGradAscent1(dataMatrix, classLabels, numIter=150):
m,n = np.shape(dataMatrix)
weights = np.ones(n)
for j in range(numIter):
dataIndex = list(range(m))
for i in range(m):
alpha = 4/(1.0+j+i)+0.0001
randIndex = int(np.random.uniform(0,len(dataIndex)))
h = sigmoid(sum(np.array(dataMatrix[randIndex])*weights))
error = classLabels[randIndex] - h
weights = weights + alpha * error * np.array(dataMatrix[randIndex])
del(dataIndex[randIndex])
return weights weights = stocGradAscent1(dataMat,labelMat)
print(weights)

import matplotlib.pyplot as plt

def plotBestFit():
dataMat,labelMat=loadDataSet()
weights = gradAscent(dataMat,labelMat)
dataArr = np.array(dataMat)
n = np.shape(dataArr)[0]
xcord1 = []
ycord1 = []
xcord2 = []
ycord2 = []
for i in range(n):
if(int(labelMat[i])== 1):
xcord1.append(dataArr[i,1])
ycord1.append(dataArr[i,2])
else:
xcord2.append(dataArr[i,1])
ycord2.append(dataArr[i,2])
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
ax.scatter(xcord2, ycord2, s=30, c='green')
x = np.arange(-3.0, 3.0, 0.1)
y = (-weights[0]-weights[1]*x)/weights[2]
y = np.array(y).reshape(len(x))
ax.plot(x, y)
plt.xlabel('X1')
plt.ylabel('X2');
plt.show() plotBestFit()

def classifyVector(z, weights):
prob = sigmoid(sum(z*weights))
if(prob > 0.5):
return 1.0
else:
return 0.0 def colicTest():
frTrain = open('D:\\LearningResource\\machinelearninginaction\\Ch05\\horseColicTraining.txt')
frTest = open('D:\\LearningResource\\machinelearninginaction\\Ch05\\horseColicTest.txt')
trainingSet = []
trainingLabels = []
for line in frTrain.readlines():
currLine = line.strip().split('\t')
lineArr =[]
for i in range(21):
lineArr.append(float(currLine[i]))
trainingSet.append(lineArr)
trainingLabels.append(float(currLine[21]))
trainWeights = stocGradAscent1(np.array(trainingSet), trainingLabels, 1000)
errorCount = 0
numTestVec = 0.0
for line in frTest.readlines():
numTestVec += 1.0
currLine = line.strip().split('\t')
lineArr =[]
for i in range(21):
lineArr.append(float(currLine[i]))
if(int(classifyVector(np.array(lineArr), trainWeights))!= int(currLine[21])):
errorCount += 1
errorRate = (float(errorCount)/numTestVec)
print("the error rate of this test is: %f" % errorRate)
return errorRate errorRate = colicTest()
print(errorRate) def multiTest():
numTests = 10
errorSum=0.0
for k in range(numTests):
errorSum += colicTest()
print("after %d iterations the average error rate is: %f" % (numTests, errorSum/float(numTests))) multiTest()

吴裕雄 python 机器学习-Logistic(1)的更多相关文章

  1. 吴裕雄 python 机器学习——人工神经网络感知机学习算法的应用

    import numpy as np from matplotlib import pyplot as plt from sklearn import neighbors, datasets from ...

  2. 吴裕雄 python 机器学习——分类决策树模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_s ...

  3. 吴裕雄 python 机器学习——回归决策树模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_s ...

  4. 吴裕雄 python 机器学习——线性判断分析LinearDiscriminantAnalysis

    import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot ...

  5. 吴裕雄 python 机器学习——逻辑回归

    import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot ...

  6. 吴裕雄 python 机器学习——ElasticNet回归

    import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot ...

  7. 吴裕雄 python 机器学习——Lasso回归

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model from s ...

  8. 吴裕雄 python 机器学习——岭回归

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model from s ...

  9. 吴裕雄 python 机器学习——线性回归模型

    import numpy as np from sklearn import datasets,linear_model from sklearn.model_selection import tra ...

随机推荐

  1. django-request获取数据

    request 如果说 urls.py 是 Django 中前端页面和后台程序桥梁,那么 request 就是桥上负责运输的小汽车 可以说后端接收到的来至前端的信息几乎全部来自于requests中. ...

  2. 学习js第三天小结

    1.冒泡排序分析: 例:将数组[9,8,7,6,5,4,3,2,1,0]按照从小打大的顺序进行冒泡排序. 演变过程: 第一趟: 8,7,6,5,4,3,2,1,0,9    比较了9次: 第二趟: 7 ...

  3. python—正则表达式

    我们平时上网的时候,经常需要在一些网站上注册帐号,而注册帐号的时候对帐号信息会有一些要求. 比如: 上面的图片中,输入的邮件地址.密码.手机号 符合要求才可以注册成功. 我们是我们自己写的网站,那么我 ...

  4. win10 java1.7安装笔记

    博主不选择安装C盘,选择在D盘安装,新建Java文件夹,在Java文件夹中新建两个子文件夹,一个命名jdk1.7,一个命名jre,如果不区分目录安装jdk和jre,会导致一些文件的缺失,导致一些错误, ...

  5. 01-spark基础

    1.定义 Spark是一个由scala语言编写的实时计算系统 Spark支持的API包括Scala.Python.Java .R 2.功能 Spark Core: 将分布式数据抽象为弹性分布式数据集( ...

  6. 关于springboot

    概念 Spring的优缺点 1. 优点(AOP和IOC简化开发) Spring是Java企业版(Java Enterprise Edition,JEE,也称J2EE)的轻量级代替品.无需开发重量级的E ...

  7. LeetCode 771 宝石和石头

    Input: J = "aA", S = "aAAbbbb" Output: 3 解:J为宝石字符串,S为包含宝石的字符串,J中的字母如果在S中出现数字就➕1 ...

  8. 《C++数据结构-快速拾遗》 手写链表

    注释:吕鑫老师C++对于找工作真的是很好的教程,基本什么方面都讲的很细致,但是对于大多数人只有快进快进再快进~~ 注释:基本链表信息自己百度,这里只是一个快速拾遗过程. 1.链表定义 typedef ...

  9. Vue.js模拟百度下拉框

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  10. gentoo AR9285 BCM57780 安装驱动

    首先使用启动光盘启动, 然后 mount /dev/sda4 /mnt/gentoo 挂载硬盘 lspci -v 1>/mnt/gentoo/root/lspci_v.txt 输出信息到文件. ...