题面

这种换来换去的东西很容易想到置换群那一套,然后题目甚至还暗示了二进制=。=

直接换的话显然是$2^{a+b}$次,但是一个循环节里可以少换一次,然后问题就变成了数循环节

在一个循环节里的位置有什么特征?用二进制表示位置,那么他们的位置可以通过循环左移a位/循环右移b位互相表示,然后问题就变成了:在左移a位/右移b位的置换群作用下,在a+b个01构成的环里找等价类。仍然不好做,因为现在直接Burnside做不出来,Polya又还没法做,继续转换

我们把每$gcd(a,b)$个数缩成一个,也就是转成$\frac{(a+b)}{gcd(a,b)}$个环数等价类。这样的好处是旋转都变成了1位,然后套上Polya就可以了,大概需要卡一卡常?

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=1e6+,mod=1e6+;
int T,a,b,cnt,c1,c2,pwe[],prf[];
int pw[N],npr[N],pri[N],mind[N],fac[N],fai[N];
int GCD(int a,int b)
{
return b?GCD(b,a%b):a;
}
void Add(int &x,int y)
{
x+=y;
if(x>=mod) x-=mod;
}
int Qpow(int x,int k)
{
if(k==) return x;
int tmp=Qpow(x,k/);
return k%?1ll*tmp*tmp%mod*x%mod:1ll*tmp*tmp%mod;
}
void Pre()
{
npr[]=true,mind[]=;
for(int i=;i<=;i++)
{
if(!npr[i]) pri[++cnt]=i,mind[i]=i;
for(int j=,k;j<=cnt&&(k=i*pri[j])<=;j++)
{
npr[k]=true,mind[k]=pri[j];
if(i%pri[j]==) break;
}
}
pw[]=;
for(int i=;i<=;i++)
pw[i]=pw[i-]*%mod;
}
void DFS(int idx,int num,int phi)
{
if(idx>c2)
fac[++c1]=num,fai[num]=phi;
else
{
int pr=prf[idx];
DFS(idx+,num,phi);
DFS(idx+,num*=pr,phi*=pr-);
for(int i=;i<=pwe[idx];i++)
DFS(idx+,num*=pr,phi*=pr);
}
}
void Decompose(int x)
{
if(x==)
fac[c1=]=;
else
{
c2=;
while(x!=)
{
prf[++c2]=mind[x],pwe[c2]=;
while(x%prf[c2]==) x/=prf[c2],pwe[c2]++;
}
c1=,DFS(,,);
}
}
int Query(int len,int col)
{
int ret=;
Decompose(len);
for(int i=;i<=c1;i++)
Add(ret,1ll*fai[len/fac[i]]*Qpow(col,fac[i])%mod);
return 1ll*ret*Qpow(len,mod-)%mod;
}
int main()
{
Pre();
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&a,&b);
if(!a||!b) puts("");
else
{
int g=GCD(a,b);
printf("%d\n",(pw[a+b]-Query((a+b)/g,pw[g])+mod)%mod);
}
}
return ;
}

解题:SPOJ 422 Transposing is Even More Fun的更多相关文章

  1. SPOJ 422 Transposing is Even More Fun(polay计数)

    题目链接:http://www.spoj.com/problems/TRANSP2/ 题意: 思路:不妨设a=1,b=2, 我们发现(001,010,100)组成一个置换,(011,110,101)组 ...

  2. SPOJ 422 Transposing is Even More Fun ——Burnside引理

    这题目就比较有趣了. 大概题目中介绍了一下计算机的储存方法,给一个$2^a*2^b$的矩阵. 求转置.但是只能交换两个数,求所需要的步数. 首先可以把变化前后的位置写出来,构成了许多的循环.左转将狼踩 ...

  3. 【SPOJ】Transposing is even more fun!

    题意: 给出a.b 表示按先行后列的方式储存矩阵 现在要将其转置 可以交换两个点的位置 求最小操作次数 题解: 储存可以将其视为拉成一条链 设a=5.b=2 则在链上坐标用2^***(a,b)表示为( ...

  4. SPOJ QTREE 系列解题报告

    题目一 : SPOJ 375 Query On a Tree http://www.spoj.com/problems/QTREE/ 给一个树,求a,b路径上最大边权,或者修改a,b边权为t. #in ...

  5. 【LeetCode】422. Valid Word Square 解题报告(C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 拼接出每一列的字符串 日期 题目地址:https:// ...

  6. Spring-2-H Array Diversity(SPOJ AMR11H)解题报告及测试数据

    Array Diversity Time Limit:404MS     Memory Limit:0KB     64bit IO Format:%lld & %llu   Descript ...

  7. Spring-2-J Goblin Wars(SPOJ AMR11J)解题报告及测试数据

    Goblin Wars Time Limit:432MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Description Th ...

  8. Spring-2-B Save the Students(SPOJ AMR11B)解题报告及测试数据

    Save the Students Time Limit:134MS     Memory Limit:0KB     64bit IO Format:%lld & %llu   Descri ...

  9. 解题:SPOJ 3734 Periodni

    题面 按列高建立笛卡尔树,转成树上问题...... 笛卡尔树是什么? 它一般是针对序列建立的,是下标的BST和权值的堆(即中序遍历是原序列连续区间,节点权值满足堆性质),这里不讲具体怎么建树(放在知识 ...

随机推荐

  1. WPF 嵌入winform 控件

    引入 WindowsFormsIntegration.dll   和   System.Windows.Forms.dll <Window x:Class="wgscd.Window1 ...

  2. 20155318 《网络攻防》Exp6 信息搜集与漏洞扫描

    20155318 <网络攻防>Exp6 信息搜集与漏洞扫描 基础问题 哪些组织负责DNS,IP的管理. 互联网名称与数字地址分配机构,ICANN机构.其下有三个支持机构,其中地址支持组织( ...

  3. EZ 2018 04 21 NOIP2018 模拟赛(十) -LoliconAutomaton的退役赛

    难得的一次Unrated,避免了重回1500的尴尬 其实题目都还可以,但只不过所有人T1都炸了,可能是数据的锅(假的) 而且我因为T1SB的把T2弃了,没想到是千年水题 T3莫名爆炸,然后TM的40分 ...

  4. 第五节 HTML&CSS -- 关于浮动和清除浮动的解说,以及两个大坑不要踩

    1.随便唠叨几句   这一节课我会对浮动元素和怎样清除浮动相关的技术进行一个讲解,同时,我会列举一些我们前端开发中常见的坑,希望大家以后不要在这些地方犯错.在开始今天的课程之前,有一个东西我需要先讲一 ...

  5. 【最详细最完整】在Linux 下如何打包免安装的QT程序?

    在Linux 下如何打包免安装的QT程序? 版权声明:嵌入式linux相关的文章是我的学习笔记,基于Exynos 4412开发板,一部分内容是总结,一部分是查资料所得,大家可以自由转载,但请注明出处! ...

  6. 基于vue全家桶制作的移动端音乐WebApp

    Vue.js 2.0实战项目 基于Vue + Vuex + Vue-router + Webpack 2.0 打造移动端音乐WebAPP,实现了轮播图.音乐推荐.歌手列表.音乐搜索.注册等功能. 技术 ...

  7. SQL调优日志--内存问题排查入门篇

    概述 很多系统的性能问题,是由内存导致的.内存不够会导致页面频繁换入换出,IO队列高,进而影响数据库整体性能. 排查 内存对数据库性能非常重要.那么我当出现问题的时候,我们怎么排查性能问题呢? 存在问 ...

  8. 调用wx.request接口时需要注意的几个问题

    写在前面 之前写了一篇<微信小程序实现各种特效实例>,上次的小程序的项目我负责大部分前端后台接口的对接,然后学长帮我改了一些问题.总的来说,收获了不少吧! 现在项目已经完成,还是要陆陆续续 ...

  9. Json To CSharp

    This is a tools for generate json reader classes. In some case, when we get a json data, we hope to ...

  10. http-cache浏览器缓存

    摘至知乎 首先得明确 http 缓存的好处 减少了冗余的数据传输,减少网费 减少服务器端的压力 Web 缓存能够减少延迟与网络阻塞,进而减少显示某个资源所用的时间 加快客户端加载网页的速度 常见 ht ...