题目链接:

http://acm.hdu.edu.cn/showproblem.php?pid=3371

Problem Description
In 2100, since the sea level rise, most of the cities disappear. Though some survived cities are still connected with others, but most of them become disconnected. The government wants to build some roads to connect all of these cities again, but they don’t want to take too much money.  
 
Input
The first line contains the number of test cases.
Each
test case starts with three integers: n, m and k. n (3 <= n
<=500) stands for the number of survived cities, m (0 <= m <=
25000) stands for the number of roads you can choose to connect the
cities and k (0 <= k <= 100) stands for the number of still
connected cities.
To make it easy, the cities are signed from 1 to n.
Then follow m lines, each contains three integers p, q and c (0 <= c <= 1000), means it takes c to connect p and q.
Then
follow k lines, each line starts with an integer t (2 <= t <= n)
stands for the number of this connected cities. Then t integers follow
stands for the id of these cities.
 
Output
For each case, output the least money you need to take, if it’s impossible, just output -1.
 
Sample Input
1
6 4 3
1 4 2
2 6 1
2 3 5
3 4 33
2 1 2
2 1 3
3 4 5 6
 
Sample Output
1
 
Author
dandelion
 
Source
 /*
问题
输入已经存在的图以及将要增加的边及其花费,计算并输出最小生成树还需要的最小花费 解题思路
将现在的图连起来使得它们的花费为0,再加入将要建设的边,直接跑一边prim即可,注意不能构成最小生成树
的情况说出-1,代码中的u == -1 结束很关键。
*/
#include<cstdio>
#include<cstring> const int N=;
const int INF=;
int e[N+][N+],a[N],dis[N],bk[N];
int prim();
int n,m,k; int main(){
int T,i,j,q,t1,t2,t3,t;
scanf("%d",&T);
while(T--){
for(i=;i<=N;i++){
for(j=;j<=N;j++){
e[i][j] = i==j?:INF;
}
}
scanf("%d%d%d",&n,&m,&k);
for(i=;i<=m;i++){
scanf("%d%d%d",&t1,&t2,&t3);
if(e[t1][t2] > t3){
e[t1][t2] = t3;
e[t2][t1] = t3;
}
}
for(i=;i<=k;i++){
scanf("%d",&t);
for(j=;j<=t;j++){
scanf("%d",&a[j]);
}
for(j=;j<=t-;j++){
for(q=j+;q<=t;q++){
e[ a[j] ][ a[q] ]=;
e[ a[q] ][ a[j] ]=;
}
}
} /*for(i=1;i<=n;i++){
for(j=1;j<=n;j++){
printf("%9d",e[i][j]);
}
printf("\n");
}*/
int ans=prim();
if(ans == -)
printf("-1\n");
else
printf("%d\n",ans);
}
return ;
} int prim()
{
int i;
for(i=;i<=n;i++)
dis[i]=e[][i];
memset(bk,,sizeof(bk));
bk[]=;
int c=,sum=,mina,u; while(c < n){
mina=INF;
u=-;
for(i=;i<=n;i++){
if(!bk[i] && dis[i] < mina){
mina=dis[i];
u=i;
}
}
//printf("u==%d\n",u);
if(u == -)
break;
bk[u]=;
c++;
sum += dis[u];
for(i=;i<=n;i++){
if(!bk[i] && dis[i] > e[u][i])
dis[i] = e[u][i];
}
}
if(u == -)
return -;
return sum;
}
 

HDU 3371 Connect the Cities(prim算法)的更多相关文章

  1. hdu 3371 Connect the Cities

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=3371 Connect the Cities Description In 2100, since th ...

  2. hdu 3371 Connect the Cities (最小生成树Prim)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=3371 题目不难 稍微注意一下 要把已经建好的城市之间的花费定义为0,在用普通Prim算法就可以了:我没 ...

  3. hdu 3371 Connect the Cities(最小生成树)

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=3371 984ms风险飘过~~~ /************************************ ...

  4. HDU 3371 Connect the Cities(并查集+Kruskal)

    题目网址:http://acm.hdu.edu.cn/showproblem.php?pid=3371 思路: 这道题很明显是一道最小生成树的题目,有点意思的是,它事先已经让几个点联通了.正是因为它先 ...

  5. Hdu 3371 Connect the Cities(最小生成树)

    地址:http://acm.hdu.edu.cn/showproblem.php?pid=3371 其实就是最小生成树,但是这其中有值得注意的地方:就是重边.题目没有告诉你两个城市之间只有一条路可走, ...

  6. HDU 3371 Connect the Cities 最小生成树(和关于sort和qsort的一些小发现)

    解题报告:有n个点,然后有m条可以添加的边,然后有一个k输入,表示一开始已经有k个集合的点,每个集合的点表示现在已经是连通的了. 还是用并查集加克鲁斯卡尔.只是在输入已经连通的集合的时候,通过并查集将 ...

  7. hdu oj 3371 Connect the Cities (最小生成树)

    Connect the Cities Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  8. hdu 1102 Constructing Roads (Prim算法)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1102 Constructing Roads Time Limit: 2000/1000 MS (Jav ...

  9. hdoj 3371 Connect the Cities

    Connect the Cities Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

随机推荐

  1. hive 实现类似 contain 包含查询

    如何用hive sql 实现 contain 查询? 需求:判断某个字符串是否在另一个字符串中? 方法: 可以自定义函数,但是用正则匹配regexp更方便 代码如下: 首先,查看regexp正则函数的 ...

  2. 由异常掉电问题---谈xfs文件系统

    由异常掉电问题---谈xfs文件系统 本文皆是作者自己的学习总结或感悟(linux环境),如有不对,欢迎提出一起探讨!! 目录结构 一.相关知识 二.问题提出 三.处理方法 四.最终结果 一.相关知识 ...

  3. vsm安装

    一. 部署环境介绍 软件需求 1) CentOS 6.5 64bit 2) Ceph 0.80.6 网络拓扑介绍 1) Controller Node 由Console节点组成,安装VSM控制平台 2 ...

  4. Java map的匿名类的初始化

    可以直接使用: Map<String, Object> testMap = new HashMap<String, Object>() { { put("test1& ...

  5. Network in Network 个人理解

    关键点是1*1的卷积是怎么用的,也就是MLP卷积.看如下的数据就可以理解了 输入为224*224*3的图像,第一层卷积为11*11*3*96(也就是96个11*11*3的卷积核,另外还有步长),卷积完 ...

  6. wpf 水波进度条 用户控件

    之前看公司web前端做了个 圆形的水波纹 进度条,就想用wpf 做一个,奈何自己太菜 一直做不出来,在看过 “普通的地球人” 的 “ WPF实现三星手机充电界面 博客之后 我也来照葫芦画个瓢. 废话不 ...

  7. 设计模式:Builder

    简介 建造者模式(Builder),将一个复杂对象的表示和它的构建分离,这样同样的构造过程可以创建出不同的对象状态. 类图 下面的Product是要创建的对象的目标类型,产品. Builder 创建一 ...

  8. 【文文殿下】[CEOI2004]锯木厂选址 题解

    题解 我们枚举建厂的位置,发现有个\(n^2\)的DP.随手搞个斜率优化到\(O(n)\). #include<bits/stdc++.h> using namespace std; ty ...

  9. [HNOI2015]开店(树剖+主席树+标记永久化)

    听说正解点分树?我不会就对了 此题是 \([LNOI2014]LCA\) 强化版,也是差分一下,转化为区间加区间和 不过权值有大小要求,那么我们按照权值排序,依次加入主席树,询问的时候 \(lower ...

  10. 解决 canvas 绘图在高清屏中的模糊问题

    解决 canvas 绘图在高清屏中的模糊问题 为什么模糊 CSS 像素是一个抽象单位(1 px),浏览器根据某种规则将 css 像素转化为屏幕需要的实际像素值. 在高清屏之前,屏幕上显示一个像素点需要 ...