一本通1649【例 2】2^k 进制数
1649:【例 2】2^k 进制数
时间限制: 1000 ms 内存限制: 524288 KB
【题目描述】
原题来自:NOIP 2006 提高组
设 r 是个 2k 进制数,并满足以下条件:
1、r 至少是个 2 位的 2k 进制数。
2、作为 2k 进制数,除最后一位外,r 的每一位严格小于它右边相邻的那一位。
3、将 r 转换为 2 进制数 q 后,q 的总位数不超过 w。
在这里,正整数 k 和 w 是事先给定的。
问:满足上述条件的不同的 r 共多少个?
【输入】
输入只一行,为两个正整数 k 和 w。
【输出】
输出为一行,是一个正整数,为所求的计算结果,即满足条件的不同的 rr 的个数(用十进制数表示,要求最高位不得为 0,各数字之间不得插入数字以外的其他字符(例如空格、换行符、逗号等)。
提示:作为结果的正整数可能很大,但不会超过 200 位。
【输入样例】
3 7
【输出样例】
36
【提示】
数据范围与提示:
对于所有数据,1≤k≤9,k<w≤3×104 。
sol:这道其实是道大水题
对于条件二很容易发现是个组合数,而且是严格小于,k的范围也不大,直接n2预处理组合数
统计答案是注意讨论首位是0和非0的情况
Ps:裸的高精貌似会MLE,建议压位
#include <bits/stdc++.h>
using namespace std;
typedef int ll;
inline ll read()
{
ll s=;
bool f=;
char ch=' ';
while(!isdigit(ch))
{
f|=(ch=='-'); ch=getchar();
}
while(isdigit(ch))
{
s=(s<<)+(s<<)+(ch^); ch=getchar();
}
return (f)?(-s):(s);
}
#define R(x) x=read()
inline void write(ll x)
{
if(x<)
{
putchar('-'); x=-x;
}
if(x<)
{
putchar(x+''); return;
}
write(x/);
putchar((x%)+'');
return;
}
#define W(x) write(x),putchar(' ')
#define Wl(x) write(x),putchar('\n')
const int Base=,power=;
int K,B,W;
struct Bignum
{
int a[];
Bignum(){memset(a,,sizeof a);}
Bignum(int x)
{
memset(a,,sizeof a);
while(x)
{
a[++a[]]=x%Base;
x/=Base;
}
return;
}
inline void print()
{
int i;
write(a[a[]]);
for(i=a[]-;i>=;i--)
{
if(a[i]<) putchar('');
if(a[i]<) putchar('');
if(a[i]<) putchar('');
write(a[i]);
}
return;
}
}C[][],ans;
#define P(x) x.print(),putchar(' ')
#define Pl(x) x.print(),putchar('\n')
inline Bignum operator+(const Bignum &p,const Bignum &q)
{
int i;
Bignum ans=p;
for(i=;i<=q.a[];i++)
{
ans.a[i]+=q.a[i];
ans.a[i+]+=ans.a[i]/Base;
ans.a[i]-=(ans.a[i]>=Base)?Base:;
}
while(ans.a[ans.a[]+]) ans.a[]++;
return ans;
}
int main()
{
int i,j;
R(K); R(W);
B=<<K;
C[][]=Bignum();
for(i=;i<=B;i++)
{
for(j=;j<=B;j++)
{
C[i][j]=C[i][j]+C[i-][j];
if(j) C[i][j]=C[i][j]+C[i-][j-];
}
}
int oo=W%K,Up=W/K;
for(i=min(Up,B-);i>=;i--)
{
ans=ans+C[B-][i];
}
if(oo)
{
int Last=(<<oo)-;
for(i=;i<=Last;i++) if((B-i-)>=Up)
{
ans=ans+C[B-i-][Up];
}
Pl(ans);
}
else
{
Pl(ans);
}
return ;
}
/*
input
3 7
output
36 input
2 8
output
4
*/
一本通1649【例 2】2^k 进制数的更多相关文章
- k进制正整数的对k-1取余与按位取余
华电北风吹 天津大学认知计算与应用重点实验室 日期:2015/8/24 先说一下结论 有k进制数abcd,有abcd%(k−1)=(a+b+c+d)%(k−1) 这是由于kn=((k−1)+1)n=∑ ...
- [codevs1157]2^k进制数
[codevs1157]2k进制数 试题描述 设r是个2k 进制数,并满足以下条件: (1)r至少是个2位的2k 进制数. (2)作为2k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. ...
- noip2006 2^k进制数
设r是个2k进制数,并满足以下条件: (1)r至少是个2位的2k进制数. (2)作为2k进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进制数q后,则q的总位数不超过w ...
- NOIP2006 2k进制数
2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换 ...
- P1066 2^k进制数
传送门 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进 ...
- 洛谷 P1066 2^k进制数
P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. ( ...
- js各种进制数之间的转换
计算机中常用的进制数有二进制.八进制.十进制.十六进制 一.十进制 to 其他 var x = 10; // 或定义其他值均可 x.toString(n); // n 代表要转换到的进制,比如n可以为 ...
- K进制数
题目描述 考虑包含N位数字的K-进制数. 定义一个数有效, 如果其K-进制表示不包含两连续的0. 考虑包含N位数字的K-进制数. 定义一个数有效, 如果其K-进制表示不包含两连续的0. 例: 1010 ...
- 蓝桥杯 问题 1110: 2^k进制数 (排列组合+高精度巧妙处理)
题目链接 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2 ...
随机推荐
- scapy学习笔记(3)发送包,SYN及TCP traceroute 扫描
转载请注明:@小五义:http://www.cnblogs/xiaowuyi 在安装完scapy(前两篇笔记有介绍)后,linux环境下,执行sudo scapy运行scapy. 一.简单的发送包 1 ...
- lwip Packet buffers (PBUF) API 操作 集合
struct pbuf * pbuf_alloc (pbuf_layer layer, u16_t length, pbuf_type type) struct pbuf * pbuf_all ...
- VBA删除 语法
Option Explicit '清空数据 Private Sub CommandButton1_Click() Dim qknum As Integer '选择是或者否 来确认删除数据 '中对话 ...
- python基础1之python介绍、安装、变量和字符编码、数据类型、输入输出、数据运算、循环
开启python之路 内容概要: 一.python介绍 二.安装 三.第一个python程序 四.变量和字符编码 五.用户输入 六.数据类型 七.一切皆对象 八.数据运算 九.if else 流程判断 ...
- 2017-2018-2 20155224『网络对抗技术』Exp6:信息搜集与漏洞扫描
实践内容 各种搜索技巧的应用 DNS IP注册信息的查询 基本的扫描技术:主机发现.端口扫描.OS及服务版本探测.具体服务的查点 漏洞扫描:会扫,会看报告,会查漏洞说明,会修补漏洞 基本问题回答 哪些 ...
- Hadoop开发第3期---Hadoop的伪分布式安装
一.准备工作 1. 远程连接工具的安装 PieTTY 是在PuTTY 基础上开发的,改进了Putty 的用户界面,提供了多语种支持.Putty 作为远程连接linux 的工具,支持SSH 和telne ...
- ScreenToGif 代码分析
ScreenToGif项目由四个文件夹组成: Files 存放协议文件 GifRecorder 存放gif编码器代码 ScreenToGif 存放主代码 Other 存放Hooktest和Transl ...
- mac终端将本地代码push到github总结
1.创建一个github账号 2.在本地目录下创建一个本地仓库,用来存放代码 mkdir prepass_repository (/Users/gejuncheng/文件/prepass_reposi ...
- android全屏
this.requestWindowFeature( Window.FEATURE_NO_TITLE ); this.getWindow().setFlags(WindowManager.Layout ...
- R语言学习 第五篇:字符串操作
文本数据存储在字符向量中,字符向量的每个元素都是字符串,而非单独的字符.在R中,可以使用双引号,或单引号表示字符. 一,字符串中的字符数量 函数nchar()用于获得字符串中的字符数量: > s ...