一本通1649【例 2】2^k 进制数
1649:【例 2】2^k 进制数
时间限制: 1000 ms 内存限制: 524288 KB
【题目描述】
原题来自:NOIP 2006 提高组
设 r 是个 2k 进制数,并满足以下条件:
1、r 至少是个 2 位的 2k 进制数。
2、作为 2k 进制数,除最后一位外,r 的每一位严格小于它右边相邻的那一位。
3、将 r 转换为 2 进制数 q 后,q 的总位数不超过 w。
在这里,正整数 k 和 w 是事先给定的。
问:满足上述条件的不同的 r 共多少个?
【输入】
输入只一行,为两个正整数 k 和 w。
【输出】
输出为一行,是一个正整数,为所求的计算结果,即满足条件的不同的 rr 的个数(用十进制数表示,要求最高位不得为 0,各数字之间不得插入数字以外的其他字符(例如空格、换行符、逗号等)。
提示:作为结果的正整数可能很大,但不会超过 200 位。
【输入样例】
3 7
【输出样例】
36
【提示】
数据范围与提示:
对于所有数据,1≤k≤9,k<w≤3×104 。
sol:这道其实是道大水题
对于条件二很容易发现是个组合数,而且是严格小于,k的范围也不大,直接n2预处理组合数
统计答案是注意讨论首位是0和非0的情况
Ps:裸的高精貌似会MLE,建议压位
#include <bits/stdc++.h>
using namespace std;
typedef int ll;
inline ll read()
{
ll s=;
bool f=;
char ch=' ';
while(!isdigit(ch))
{
f|=(ch=='-'); ch=getchar();
}
while(isdigit(ch))
{
s=(s<<)+(s<<)+(ch^); ch=getchar();
}
return (f)?(-s):(s);
}
#define R(x) x=read()
inline void write(ll x)
{
if(x<)
{
putchar('-'); x=-x;
}
if(x<)
{
putchar(x+''); return;
}
write(x/);
putchar((x%)+'');
return;
}
#define W(x) write(x),putchar(' ')
#define Wl(x) write(x),putchar('\n')
const int Base=,power=;
int K,B,W;
struct Bignum
{
int a[];
Bignum(){memset(a,,sizeof a);}
Bignum(int x)
{
memset(a,,sizeof a);
while(x)
{
a[++a[]]=x%Base;
x/=Base;
}
return;
}
inline void print()
{
int i;
write(a[a[]]);
for(i=a[]-;i>=;i--)
{
if(a[i]<) putchar('');
if(a[i]<) putchar('');
if(a[i]<) putchar('');
write(a[i]);
}
return;
}
}C[][],ans;
#define P(x) x.print(),putchar(' ')
#define Pl(x) x.print(),putchar('\n')
inline Bignum operator+(const Bignum &p,const Bignum &q)
{
int i;
Bignum ans=p;
for(i=;i<=q.a[];i++)
{
ans.a[i]+=q.a[i];
ans.a[i+]+=ans.a[i]/Base;
ans.a[i]-=(ans.a[i]>=Base)?Base:;
}
while(ans.a[ans.a[]+]) ans.a[]++;
return ans;
}
int main()
{
int i,j;
R(K); R(W);
B=<<K;
C[][]=Bignum();
for(i=;i<=B;i++)
{
for(j=;j<=B;j++)
{
C[i][j]=C[i][j]+C[i-][j];
if(j) C[i][j]=C[i][j]+C[i-][j-];
}
}
int oo=W%K,Up=W/K;
for(i=min(Up,B-);i>=;i--)
{
ans=ans+C[B-][i];
}
if(oo)
{
int Last=(<<oo)-;
for(i=;i<=Last;i++) if((B-i-)>=Up)
{
ans=ans+C[B-i-][Up];
}
Pl(ans);
}
else
{
Pl(ans);
}
return ;
}
/*
input
3 7
output
36 input
2 8
output
4
*/
一本通1649【例 2】2^k 进制数的更多相关文章
- k进制正整数的对k-1取余与按位取余
华电北风吹 天津大学认知计算与应用重点实验室 日期:2015/8/24 先说一下结论 有k进制数abcd,有abcd%(k−1)=(a+b+c+d)%(k−1) 这是由于kn=((k−1)+1)n=∑ ...
- [codevs1157]2^k进制数
[codevs1157]2k进制数 试题描述 设r是个2k 进制数,并满足以下条件: (1)r至少是个2位的2k 进制数. (2)作为2k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. ...
- noip2006 2^k进制数
设r是个2k进制数,并满足以下条件: (1)r至少是个2位的2k进制数. (2)作为2k进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进制数q后,则q的总位数不超过w ...
- NOIP2006 2k进制数
2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换 ...
- P1066 2^k进制数
传送门 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进 ...
- 洛谷 P1066 2^k进制数
P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. ( ...
- js各种进制数之间的转换
计算机中常用的进制数有二进制.八进制.十进制.十六进制 一.十进制 to 其他 var x = 10; // 或定义其他值均可 x.toString(n); // n 代表要转换到的进制,比如n可以为 ...
- K进制数
题目描述 考虑包含N位数字的K-进制数. 定义一个数有效, 如果其K-进制表示不包含两连续的0. 考虑包含N位数字的K-进制数. 定义一个数有效, 如果其K-进制表示不包含两连续的0. 例: 1010 ...
- 蓝桥杯 问题 1110: 2^k进制数 (排列组合+高精度巧妙处理)
题目链接 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2 ...
随机推荐
- 【转】为什么volatile不能保证原子性而Atomic可以?
直接上好文链接!!! 为什么volatile不能保证原子性而Atomic可以?
- $Simpson$积分入门
\(\rm{0x01}\) 前言 首先阐明一点,自适应辛普森算法(\(\rm{Adaptive ~Simpson's~ rule}\) )是一类近似算法(\(\rm{Approximation ~al ...
- cloudstack secondary vm starting
等1个小时,差不多可以进入虚拟机,看日志/var/log/cloud.log
- Apple Watch应用开发之PM2.5查询
最近脚伤,停止了跑步,看来又要胖了,不过最近倒是对Swift语言很感兴趣,然后就开始了Apple Watch应用的开发,今天是6月8日,苹果的发布会就会在今天过后的凌晨一点开始,今天还是有点小激动的, ...
- hiveserver2连接报错: User: root is not allowed to impersonate anonymous (state=08S01,code=0)
使用HiveServer2运行时,启动好HiveServer后运行 private static String url = "jdbc:hive2://192.168.213.132:100 ...
- WPF控件加阴影模糊问题
原文:WPF控件加阴影模糊问题 不能直接把阴影加在控件上 应该加在控件的同级兄弟节点上,覆盖在底下就不会模糊了
- 【第三课】Centos 7.x系统安装和网络配置以及远程密钥登录
目录 一.安装CentOS 7.3 二.配置网络 1.使用dhclient命令自动获取ip地址 2.使用ip addr或ifconfig命令查看网卡信息 3.使用route命令查看路由信息 4.通过修 ...
- libgdx学习记录19——图片动态打包PixmapPacker
libgdx中,opengl 1.x要求图片长宽必须为2的整次幂,一般有如下解决方法 1. 将opengl 1.x改为opengl 2.0.(libgdx 1.0版本后不支持1.x,当然不存在这个问题 ...
- R语言学习 第二篇:矩阵和数组
向量是一维的,只有行这一个维度,没有其他维度.R可以创建更高维度的数据对象,例如,矩阵.数据框.数组,索引高维度的对象时,需要使用元素的下标.这些对象的下标都使用中括号[]和索引,第一个维度是row, ...
- 设计模式 笔记 命令模式 Command
//---------------------------15/04/25---------------------------- //Conmmand 命令模式----对象行为型模式 /* 1:意 ...