这三个题的代码分别对应第二个第一个第三个

在刘汝佳蓝书上我遇到了这个康托展开题。

当时去了解了一下,发现很有意思

百度上的康托展开定义

原理介绍

编辑

康托展开运算

其中,

为整数,并且

的意义为在ai之后出现的数有几个比他小

康托展开的逆运算

既然康托展开是一个双射,那么一定可以通过康托展开值求出原排列,即可以求出n的全排列中第x大排列。
如n=5,x=96时:
首先用96-1得到95,说明x之前有95个排列.(将此数本身减去1)用95去除4! 得到3余23,说明有3个数比第1位小,所以第一位是4.用23去除3! 得到3余5,说明有3个数比第2位小,所以是4,但是4已出现过,因此是5.用5去除2!得到2余1,类似地,这一位是3.用1去除1!得到1余0,这一位是2.最后一位只能是1.所以这个数是45321。
按以上方法可以得出通用的算法。 [1] 
 
此定理的证明十分简易,就是用组合原理
我们能明白第k位上的数码若为x则有(n-k-1)!(x-1)种比他小的排列(字典序小)
就可以证了
 
 
显然,n位(0~n-1)全排列后,其康托展开唯一且最大约为n!,因此可以由更小的空间来储存这些排列。由公式可将X逆推出唯一的一个排列。
 
 
我们可以发现正着求的话,阶乘on预处理,那么关键就在于ai怎么求。
我们观察到暴力是on2
如果把数变为布尔数组
转化问题为一般二位偏序
用树状数组求前面0的个数
不就是ai了么
所以就可以nlogn求解
 
发下暴力(洛谷2524)

 #include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
#define mod 19260817
int n,m,a,b,c,ans=,list[],visit[];
void makelist(){
list[]=;
for(int i=;i<=;i++)
list[i]=(list[i-]%mod)*i%mod;
}
string s;
int main(){
cin>>n;
memset(visit,,sizeof(visit));
makelist();
cin>>s;
for(int i=;i<s.length();i++){
a=s[i]-'';visit[a]=;
m=;
for(int j=;j<a;j++){
if(!visit[j])m++;
}
ans+=list[n--i]*m;
}
cout<<ans+;
return ;
}

轮到正解了(bzoj3301)

#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
#define mod 19260817
int n,m,a,b,c,ans=,list[],input[],tree[];
int lowbit(int x){return x&(-x);}
int query(int x){int ans=;for(int i=x;i>;i-=lowbit(i))ans+=tree[i];return ans;}
void add(int p,int x){for(int i=p;i<=n;i+=lowbit(i))tree[i]+=x;}
void makelist(){
list[]=;
for(int i=;i<=;i++)
list[i]=(list[i-]%mod)*i%mod;
}
int main(){
cin>>n;
makelist();
for(int i=;i<=n;i++)
cin>>input[i];
for(int i=;i<=n;i++){
a=input[i];add(a,);
m=a-query(a);
ans+=list[n-i]*m;
}
cout<<ans+;
return ;
}

那逆运算呢

由于我们知道ai<n

所以我们观察到(n-i)!*ai<n!

可以推出x/(n-i)!=ai;(下取整)

问题转化为二位偏序,前缀第k大

就可以用树状数组解决(也可以用主席树)

代码参考的candy博主

uva1125
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int N=5e5+,INF=1e6+;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,x,k;
int c[N];
inline int lowbit(int x){return x&-x;}
inline void add(int p,int v){
for(;p<=n;p+=lowbit(p)) c[p]+=v;
}
inline int sum(int p){
int res=;
for(;p>;p-=lowbit(p)) res+=c[p];
return res;
}
inline int kth(int k){
int x=,cnt=;
for(int i=;i>=;i--){
x+=(<<i);
if(x>=n||cnt+c[x]>=k) x-=(<<i);
else cnt+=c[x];
}
return x+;
}
int main(){
int T=read();
while(T--){
n=read();
memset(c,,sizeof(c));
for(int i=;i<=n;i++) add(i,);
for(int i=;i<=n;i++){
k=read()+;
x=kth(k);
cout<<x<<" ";
add(x,-);
}
}
}

BZOJ3301 P2524 UVA11525 算法解释康托展开的更多相关文章

  1. [算法总结]康托展开Cantor Expansion

    目录 一.关于康托展开 1.什么是康托展开 2.康托展开实现原理 二.具体实施 1.模板 一.关于康托展开 1.什么是康托展开 求出给定一个由1n个整数组成的任意排列在1n的全排列中的位置. 解决这样 ...

  2. POJ 1077 && HDU 1043 Eight A*算法,bfs,康托展开,hash 难度:3

    http://poj.org/problem?id=1077 http://acm.hdu.edu.cn/showproblem.php?pid=1043 X=a[n]*(n-1)!+a[n-1]*( ...

  3. 【算法进阶-康托展开】-C++

    目录 引入 这位老爷子就是康托 基本概念 康托展开是一个全排列到一个自然数的双射,常用于构建hash表时的空间压缩.设有n个数(1,2,3,4,-,n),可以有组成不同(n!种)的排列组合,康托展开表 ...

  4. 数学【P2524】 Uim的情人节礼物·其之弐 (康托展开)

    因为某人@ZAGER挖坑让我讲一下康托展开,所以发现了这个题,顺便说一下康托展开是个什么东西 题目概括 给定n与一个数列,要求求出给定数列在n的全排列中的排名(按照字典序从小到大排列) 康托展开 先放 ...

  5. UVA11525 Permutation[康托展开 树状数组求第k小值]

    UVA - 11525 Permutation 题意:输出1~n的所有排列,字典序大小第∑k1Si∗(K−i)!个 学了好多知识 1.康托展开 X=a[n]*(n-1)!+a[n-1]*(n-2)!+ ...

  6. 康托展开&逆展开算法笔记

    康托展开(有关全排列) 康托展开:已知一个排列,求这个排列在全排列中是第几个 康托展开逆运算:已知在全排列中排第几,求这个排列 定义: X=an(n-1)!+an-1(n-2)!+...+ai(i-1 ...

  7. OJ 1188 全排列---康托展开

    题目描述 求n的从小到大第m个全排列(n≤20). 输入 n和m 输出 输出第m个全排列,两个数之间有一空格. 样例输入 3 2 样例输出 1 3 2 #include<cstdio> # ...

  8. hdu1430魔板(BFS+康托展开)

    做这题先看:http://blog.csdn.net/u010372095/article/details/9904497 Problem Description 在魔方风靡全球之后不久,Rubik先 ...

  9. 洛谷P2525 Uim的情人节礼物·其之壱 [康托展开]

    题目传送门 Uim的情人节礼物·其之壱 题目描述 情人节到了,Uim打算给他的后宫们准备情人节礼物.UIm一共有N(1<=N<=9)个后宫妹子(现充去死 挫骨扬灰!). 为了维护他的后宫的 ...

随机推荐

  1. 多线程中join()

    这个鬼东西百度了好久没弄明白,大佬们代码一粘贴好了完事,借助官方api终于是理解了,当然如果有问题欢迎大家用键盘来羞辱我. 首先  join有什么用?   他是用来确定线程何时结束的 , Thread ...

  2. C 语言实例 - 字符串翻转

    C 语言实例 - 字符串翻转 C 语言实例 C 语言实例 使用递归来翻转字符串. 实例 - 字符串翻转 #include <stdio.h> void reverseSentence(); ...

  3. fetch请求数据,后台将cookie一起返回时

    请求时,添加以上标记的属性,就可以拿到后台给的cookie,并返回给后台.比如登录后才能有的操作,这样就需要返回给后台cookie从而判断是否登录

  4. 常用HTTP协议响应码(转载)

    转载于: https://blog.csdn.net/github_36032947/article/details/78343734 HTTP响应码,也称http状态码(HTTP Status Co ...

  5. sql索引的作用

    转https://www.cnblogs.com/hyd1213126/p/5828937.html (一)深入浅出理解索引结构 实际上,您可以把索引理解为一种特殊的目录.微软的SQL SERVER提 ...

  6. Hive_Hive的管理_web界面方式

    端口:9999启动方式: hive --service hwi &通过浏览器访问:http://<IP地址>:9999/hwi/ 执行启动命令后,报错,找不到hive-hwi-*. ...

  7. python学习之序列化

    序列化:不同编程语言之间传递对象需要序列化成标准格式,有XML /JSON,json格式化为字符串,UTF-8编码,速度快,切实标准格式.JSON 和 Python内置的数据类型对应如下: JSON ...

  8. Spark Mllib里如何将预测结果如0或1,转换为文字描述来显示预测结果输出(图文详解)

    不多说,直接上干货! 具体,见 Hadoop+Spark大数据巨量分析与机器学习整合开发实战的第13章 使用决策树二元分类算法来预测分类StumbleUpon数据集

  9. 【转】onAttachedToWindow()在整个Activity生命周期的位置及使用

    上篇博客实现圆角对话框样式的Activity中提到,若需实现圆角对话框Activity,需要在Activity的onAttachedToWindow()函数中做文章,那么就想问: onAttached ...

  10. Somethings about Floors题解

    题目内容:一个楼梯有N级(N >=0), 每次走1级或2级, 从底走到顶一共有多少种走法? 输入要求:只有一行输入,并且只有一个数N(如果N > 20,则N = N%21,即保证N的范围控 ...