传送门

非常显du然liu的一道题

就是求GCD

因为数据范围...

所以要上压位高精+非递归的辗转相减

关于辗转相减:

如果 A是二的倍数,B是二的倍数   那么GCD(A,B)=2 * GCD(A,B)

如果只有A是二的倍数   那么GCD(A,B)=GCD(A/2,B)

如果只有B是二的倍数   那么GCD(A,B)=GCD(A,B/2)

十分显然的结论...

然后不停地让大的数减去小的数

最后当它们相等时就是GCD了(因为大的减小的一直减到不能减就相当于取模)

int slove()
{
int A=read(),B=read(),i=,j=;
while(!(A&)) A>>=,i++;
while(!(B&)) B>>=,j++;
//先把A,B都除成奇数
//这样之后辗转相减时就不会出现两个数都是偶数的情况了
//可以减少判断次数
int cnt=min(i,j);
while()
{
if(A<B) swap(A,B);
if(A==B) return A<<cnt;
A=A-B;
while(!(A&)) A>>=;
}
}

普通的辗转相减法

然后就是恶心的压位高精了...

可以发现我们高精乘除都只乘除2,所以只要写高精乘2和高精除2以及高精减法就好了

重载运算符和压位都是基本操作了

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
using namespace std;
typedef long long ll;
const ll wid=;
char ch[];
struct bigint
{
ll s[],len;
bigint() { memset(s,,sizeof(s)); len=; }
inline void read()
{
scanf("%s",ch+);
int l=strlen(ch+),t=,k=; len=(l+)/;
for(int i=l;i;i--)
{
if(!(l-i)%){ k=; t++; }
s[t]+=k*(ch[i]^); k*=;
}
}
inline void print()
{
if(!len) { printf("0\n"); return; }
printf("%lld",s[len]);
for(int i=len-;i;i--) printf("%08lld",s[i]);//除了第一位不足的位用0补
printf("\n");
}
inline bool operator < (const bigint &tmp) const {
if(len!=tmp.len) return len<tmp.len;
for(int i=tmp.len;i;i--) if(s[i]!=tmp.s[i]) return s[i]<tmp.s[i];
return ;
}
inline bool operator == (const bigint &tmp) const {
return !(tmp<*this)&&!(*this<tmp);
}
inline bigint operator - (const bigint &tmp) const {
bigint u; u.len=len;
for(int i=;i<=len;i++)
{
u.s[i]+=s[i]-tmp.s[i];
if(u.s[i]<) u.s[i]+=wid,u.s[i+]--;
}
while(!u.s[u.len]&&u.len) u.len--;
return u;
}
inline bool pd(){ return s[]&; }//判断奇偶
inline void div2()//除2
{
len+=;
for(int i=len;i;i--)
{
if(s[i]&) s[i-]+=wid;
s[i]>>=;
}
while(!s[len]&&len) len--;
}
inline void mul2()//乘2
{
for(int i=;i<=len;i++) s[i]*=;
len+=;
for(int i=;i<=len;i++)
{
s[i+]+=s[i]/wid;
s[i]%=wid;
}
while(!s[len]&&len) len--;
}
}a,b; void slove()
{
int i=,j=;
while(!a.pd()) a.div2(),i++;
while(!b.pd()) b.div2(),j++;
if(i>j) i=j;
while()
{
if(a<b) swap(a,b);
if(a==b) break;
a=a-b;
while(!a.pd()) a.div2();
}
for(int k=;k<=i;k++) a.mul2();
a.print();
} int main()
{
a.read(); b.read();
slove();
return ;
}

P2152 [SDOI2009]SuperGCD的更多相关文章

  1. P2152 [SDOI2009]SuperGCD 未完成

    辗转相减求a,b的gcd其实可以优化的: 1.若a为偶数,b为奇数:gcd(a,b)=gcd(a/2,b) 2.若a为奇数,b为偶数:gcd(a,b)=gcd(a,b/2) 3.若a,b都是偶数:gc ...

  2.  P2152 [SDOI2009]SuperGCD (luogu)

    Stein算法是一种计算两个数最大公约数的算法,是针对欧几里德算法在对大整数进行运算时,需要试商导致增加运算时间的缺陷而提出的改进算法. 算法思想: 由J. Stein 1961年提出的Stein算法 ...

  3. 洛谷 P2152 [SDOI2009]SuperGCD (高精度)

    这道题直接写了我两个多小时-- 主要是写高精度的时候还存在着一些小毛病,调了很久 在输入这一块卡了很久. 然后注意这里用while的形式写,不然会炸 最后即使我已经是用的万进制了,但是交上去还是有两个 ...

  4. 洛谷 P2152 [SDOI2009]SuperGCD

    题意简述 求两个整数a,b的最大公约数0 < a , b ≤ 10 ^ 10000. 题解思路 如果 a % 2 == 0 && b % 2 == 0 gcd(a,b) = gc ...

  5. BZOJ 1876: [SDOI2009]SuperGCD

    1876: [SDOI2009]SuperGCD Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 3060  Solved: 1036[Submit][St ...

  6. bzoj 1876 [SDOI2009]SuperGCD(高精度+更相减损)

    1876: [SDOI2009]SuperGCD Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 2384  Solved: 806[Submit][Sta ...

  7. BZOJ 1876: [SDOI2009]SuperGCD( 更相减损 + 高精度 )

    更相减损,要用高精度.... --------------------------------------------------------------- #include<cstdio> ...

  8. 【BZOJ1876】[SDOI2009]SuperGCD(数论,高精度)

    [BZOJ1876][SDOI2009]SuperGCD(数论,高精度) 题面 BZOJ 洛谷 题解 那些说数论只会\(gcd\)的人呢?我现在连\(gcd\)都不会,谁来教教我啊? 显然\(gcd\ ...

  9. [BZOJ1876][SDOI2009]superGCD(高精度)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1876 分析: 以为辗转相减会TLE呢……但是好像没这个数据……就这么水过去了…… 辗转 ...

随机推荐

  1. 分享知识-快乐自己:Struts2文件上传及文件下载

    1)Struts2单文件上传 action:类文件 package com.mlq.action; import com.opensymphony.xwork2.ActionSupport; impo ...

  2. Memcached HA架构探索

    https://code.google.com/p/memagent/ 标签:memcached magent 高可用 HA 架构原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者 ...

  3. Linux_学习_02_ 重启tomcat与查看tomcat日志

    一.重启tomcat服务器 cd /home/ehlhec/tomcat_dingtalk/bin ./shutdown.sh ps -ef|grep java ./startup.sh (1) 进入 ...

  4. win7 jenkins 修改主目录

    1.安装tomcat 2.下载Jenkins.war包,把Jenkins.war放在D:\01Install\tomcat\webapps目录下,启动tomcat

  5. codeforces 651E E. Table Compression(贪心+并查集)

    题目链接: E. Table Compression time limit per test 4 seconds memory limit per test 256 megabytes input s ...

  6. logistic function 和 sigmoid function

     简单说, 只要曲线是 “S”形的函数都是sigmoid function: 满足公式<1>的形式的函数都是logistic function. 两者的相同点是: 函数曲线都是“S”形. ...

  7. bzoj 2251: 外星联络 后缀Trie

    题目大意 http://www.lydsy.com/JudgeOnline/problem.php?id=2251 题解 本来以为这道题应该从01序列的性质入手 结果就想歪了 等自己跳出了01序列这个 ...

  8. vue之axios请求数据本地json

    写给自己的话:静态的json文件要记得放在static文件夹下,想打自己 1.下载插件 npm install axios --save 2.在main.js下引用axios import axios ...

  9. VirtualBox下安装MacOS11

    8.键盘选中 “简体中文” -- > "拼音模式".VirtualBox安装Mac OS 10.11 ,安装日期:2016 / 5 / 14 用虚拟机装黑苹果本人也装了不下3 ...

  10. BZOJ2028:[SHOI2009]会场预约(线段树版)

    浅谈树状数组与线段树:https://www.cnblogs.com/AKMer/p/9946944.html 题目传送门:https://www.lydsy.com/JudgeOnline/prob ...