https://www.lydsy.com/JudgeOnline/problem.php?id=5059

题意:将原序列{ai}改为一个递增序列{ai1}并且使得abs(ai-ai1)的和最小。

如果一个数列是递增的则不予考虑,如果是递减的,那么应该将这个递减序列每一个数都修改为这个序列的中位数(如果中位数是两数平均数则两数间任意一数都可以),手推一下可以知道这个性质的正确性。

因为后面的(中位)数小才会向前合并,所以新的中位数一定在前面或后面数列从小到大排序后的前半段(包含中位数)中(后面数列比中位数大的部分(不在堆中)一定比前面数列的中位数大),维护一个大根可并堆存从小到大排序后区间内的后半段数然后向前合并就能得到新的中位数。

嗯不错的题?

 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
using namespace std;
const int maxn=;
int n;
int ch[maxn][]={},siz[maxn]={},dis[maxn]={},val[maxn]={};
int l[maxn]={},r[maxn]={},b[maxn]={},tot=;;
int a[maxn]={};
inline void updata(int x){
siz[x]=siz[ch[x][]]+siz[ch[x][]]+;
}
int merge(int x,int y){
if(x==)return y;if(y==)return x;
if(val[x]<val[y])swap(x,y);
ch[x][]=merge(ch[x][],y);
if(dis[ch[x][]]>dis[ch[x][]])swap(ch[x][],ch[x][]);
dis[x]=dis[ch[x][]]+;
updata(x);
return x;
}
int main(){
scanf("%d",&n);
for(int i=;i<=n;i++){
scanf("%d",&a[i]);siz[i]=;val[i]=a[i];
l[++tot]=i;r[tot]=i;b[tot]=i;
while(tot>&&val[b[tot-]]>val[b[tot]]){
b[tot-]=merge(b[tot-],b[tot]);
r[tot-]=r[tot];
while(siz[b[tot-]]>(r[tot-]-l[tot-]+)/)
b[tot-]=merge(ch[b[tot-]][],ch[b[tot-]][]);
--tot;
}
}
long long ans=;
for(int i=;i<=tot;i++){
for(int j=l[i];j<=r[i];j++){
ans+=abs(val[b[i]]-a[j]);
}
}printf("%lld\n",ans);
return ;
}

BZOJ 5059: 前鬼后鬼的守护 可并堆 左偏树 数学的更多相关文章

  1. 【BZOJ 1367】 1367: [Baltic2004]sequence (可并堆-左偏树)

    1367: [Baltic2004]sequence Description Input Output 一个整数R Sample Input 7 9 4 8 20 14 15 18 Sample Ou ...

  2. BZOJ 2333: [SCOI2011]棘手的操作 可并堆 左偏树 set

    https://www.lydsy.com/JudgeOnline/problem.php?id=2333 需要两个结构分别维护每个连通块的最大值和所有连通块最大值中的最大值,可以用两个可并堆实现,也 ...

  3. 【BZOJ 1455】 1455: 罗马游戏 (可并堆-左偏树+并查集)

    1455: 罗马游戏 Description 罗马皇帝很喜欢玩杀人游戏. 他的军队里面有n个人,每个人都是一个独立的团.最近举行了一次平面几何测试,每个人都得到了一个分数. 皇帝很喜欢平面几何,他对那 ...

  4. 【BZOJ 2333 】[SCOI2011]棘手的操作(离线+线段树|可并堆-左偏树)

    2333: [SCOI2011]棘手的操作 Description 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i],接下来有如下一些操作: U x y: 加一条边 ...

  5. BZOJ 2809: [Apio2012]dispatching(可并堆 左偏树板题)

    这道题只要读懂题目一切好说. 给出nnn个点的一棵树,每一个点有一个费用vvv和一个领导力aaa,给出费用上限mmm.求下面这个式子的最大值ax∗∣S∣ ( S⊂x的子树, ∑iv[i]≤m )\la ...

  6. BZOJ5059 前鬼后鬼的守护 【堆扩展】*

    BZOJ5059 前鬼后鬼的守护 Description 八云紫的式神八云蓝有一张符卡名为[式神-前鬼后鬼的守护],这张符卡的弹幕为BOSS从两侧向自机发射大玉,大玉后面跟着一些小玉,形成一个&quo ...

  7. bzoj 4003: 城池攻占 左偏树

    题目大意 http://www.lydsy.com/JudgeOnline/problem.php?id=4003 题解 一开始看漏条件了 题目保证当占领城池可以使攻击力乘上\(v_i\)时,一定有\ ...

  8. BZOJ 5494: [2019省队联测]春节十二响 (左偏树 可并堆)

    题意 略 分析 稍微yy一下可以感觉就是一个不同子树合并堆,然后考场上写了一发左偏树,以为100分美滋滋.然而发现自己傻逼了,两个堆一一对应合并后剩下的一坨直接一次合并进去就行了.然鹅我这个sb把所有 ...

  9. BZOJ 5059 前鬼后鬼的守护

    题解: 解法一:用函数斜率什么的,不会,留坑 解法二: 某一个序列都变成一个值那么中位数最优 加入一个元素,与前面那一段区间的中位数比较 x>=mid什么事也不做 x<mid合并两端区间 ...

随机推荐

  1. [转]计算机视觉之跟踪算法——相关滤波器Correlation Filter

    https://blog.csdn.net/victoriaw/article/details/62416759 ASEF相关滤波器: Average of Synthetic Exact Filte ...

  2. TCP报文的最大负载和报文的最小长度

    TCP报文的最大负载和报文的最小长度 MTU:最大传输单元,以太网的MTU为1500Bytes MSS:最大分解大小,为每次TCP数据包每次传输的最大数据的分段大小,由发送端通知接收端,发送大于MTU ...

  3. JSON数据填充表格——(三)

    1.定义页面请求JSON的按钮与定义一个带表头的表格  请求数据的按钮 <button class="btn btn-primary search_bar_button floatR& ...

  4. 使用spring的aop监听所有controller或者action日志

    日志还是使用log4,直接配置好文件输出或者控制台打印! 注解或者cml都行,我这里采用xml方式: spring的配置文件中配置日志类和aop: <!-- 日志监控类 --> <b ...

  5. JavaScript新手学习笔记(一)

    1.JavaScript 对大小写敏感. JavaScript 对大小写是敏感的. 当编写 JavaScript 语句时,请留意是否关闭大小写切换键. 函数 getElementById 与 getE ...

  6. java基础72 junit单元测试

    1.junit要注意的细节 1.如果junit测试一个方法,在junit窗口上显示绿色代表测试成功:如果显示红条,则代表测试方法出现异常不通过.    2.如果点击方法名.包名.类名.工程名运行jun ...

  7. MyBatis3-实现MyBatis分页

    此文章中的例子是沿用上一篇文章http://www.cnblogs.com/EasonJim/p/7055499.html的Spring MVC集成的例子改装的. MyBatis分页有以下方式实现: ...

  8. Flask form

    用户登录 #!/usr/bin/env python # -*- coding:utf- -*- from flask import Flask, render_template, request, ...

  9. wpf image blur

    RenderOptions.BitmapScalingMode="NearestNeighbor"

  10. R语言学习笔记:sort、rank、order、arrange排序函数

    R语言中排序有几个基本函数:sort().rank().order().arrange() 一.总结 sort()函数是对向量进行从小到大的排序 rank()函数返回的是对向量中每个数值对应的秩 or ...