BZOJ 5059: 前鬼后鬼的守护 可并堆 左偏树 数学
https://www.lydsy.com/JudgeOnline/problem.php?id=5059
题意:将原序列{ai}改为一个递增序列{ai1}并且使得abs(ai-ai1)的和最小。
如果一个数列是递增的则不予考虑,如果是递减的,那么应该将这个递减序列每一个数都修改为这个序列的中位数(如果中位数是两数平均数则两数间任意一数都可以),手推一下可以知道这个性质的正确性。
因为后面的(中位)数小才会向前合并,所以新的中位数一定在前面或后面数列从小到大排序后的前半段(包含中位数)中(后面数列比中位数大的部分(不在堆中)一定比前面数列的中位数大),维护一个大根可并堆存从小到大排序后区间内的后半段数然后向前合并就能得到新的中位数。
嗯不错的题?
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
using namespace std;
const int maxn=;
int n;
int ch[maxn][]={},siz[maxn]={},dis[maxn]={},val[maxn]={};
int l[maxn]={},r[maxn]={},b[maxn]={},tot=;;
int a[maxn]={};
inline void updata(int x){
siz[x]=siz[ch[x][]]+siz[ch[x][]]+;
}
int merge(int x,int y){
if(x==)return y;if(y==)return x;
if(val[x]<val[y])swap(x,y);
ch[x][]=merge(ch[x][],y);
if(dis[ch[x][]]>dis[ch[x][]])swap(ch[x][],ch[x][]);
dis[x]=dis[ch[x][]]+;
updata(x);
return x;
}
int main(){
scanf("%d",&n);
for(int i=;i<=n;i++){
scanf("%d",&a[i]);siz[i]=;val[i]=a[i];
l[++tot]=i;r[tot]=i;b[tot]=i;
while(tot>&&val[b[tot-]]>val[b[tot]]){
b[tot-]=merge(b[tot-],b[tot]);
r[tot-]=r[tot];
while(siz[b[tot-]]>(r[tot-]-l[tot-]+)/)
b[tot-]=merge(ch[b[tot-]][],ch[b[tot-]][]);
--tot;
}
}
long long ans=;
for(int i=;i<=tot;i++){
for(int j=l[i];j<=r[i];j++){
ans+=abs(val[b[i]]-a[j]);
}
}printf("%lld\n",ans);
return ;
}
BZOJ 5059: 前鬼后鬼的守护 可并堆 左偏树 数学的更多相关文章
- 【BZOJ 1367】 1367: [Baltic2004]sequence (可并堆-左偏树)
1367: [Baltic2004]sequence Description Input Output 一个整数R Sample Input 7 9 4 8 20 14 15 18 Sample Ou ...
- BZOJ 2333: [SCOI2011]棘手的操作 可并堆 左偏树 set
https://www.lydsy.com/JudgeOnline/problem.php?id=2333 需要两个结构分别维护每个连通块的最大值和所有连通块最大值中的最大值,可以用两个可并堆实现,也 ...
- 【BZOJ 1455】 1455: 罗马游戏 (可并堆-左偏树+并查集)
1455: 罗马游戏 Description 罗马皇帝很喜欢玩杀人游戏. 他的军队里面有n个人,每个人都是一个独立的团.最近举行了一次平面几何测试,每个人都得到了一个分数. 皇帝很喜欢平面几何,他对那 ...
- 【BZOJ 2333 】[SCOI2011]棘手的操作(离线+线段树|可并堆-左偏树)
2333: [SCOI2011]棘手的操作 Description 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i],接下来有如下一些操作: U x y: 加一条边 ...
- BZOJ 2809: [Apio2012]dispatching(可并堆 左偏树板题)
这道题只要读懂题目一切好说. 给出nnn个点的一棵树,每一个点有一个费用vvv和一个领导力aaa,给出费用上限mmm.求下面这个式子的最大值ax∗∣S∣ ( S⊂x的子树, ∑iv[i]≤m )\la ...
- BZOJ5059 前鬼后鬼的守护 【堆扩展】*
BZOJ5059 前鬼后鬼的守护 Description 八云紫的式神八云蓝有一张符卡名为[式神-前鬼后鬼的守护],这张符卡的弹幕为BOSS从两侧向自机发射大玉,大玉后面跟着一些小玉,形成一个&quo ...
- bzoj 4003: 城池攻占 左偏树
题目大意 http://www.lydsy.com/JudgeOnline/problem.php?id=4003 题解 一开始看漏条件了 题目保证当占领城池可以使攻击力乘上\(v_i\)时,一定有\ ...
- BZOJ 5494: [2019省队联测]春节十二响 (左偏树 可并堆)
题意 略 分析 稍微yy一下可以感觉就是一个不同子树合并堆,然后考场上写了一发左偏树,以为100分美滋滋.然而发现自己傻逼了,两个堆一一对应合并后剩下的一坨直接一次合并进去就行了.然鹅我这个sb把所有 ...
- BZOJ 5059 前鬼后鬼的守护
题解: 解法一:用函数斜率什么的,不会,留坑 解法二: 某一个序列都变成一个值那么中位数最优 加入一个元素,与前面那一段区间的中位数比较 x>=mid什么事也不做 x<mid合并两端区间 ...
随机推荐
- js 语法简写积累
if (!a || !b || !c || !d){//} 简写为:if([a, b, c, d].map(Boolean).includes(false)){//};
- java创建并配置多module的maven项目
1 使用idea创建(推荐) 这篇博客写的特别好,很详细: https://blog.csdn.net/sinat_30160727/article/details/78109769 2 使用ecli ...
- Java高性能并发编程——线程池
在通常情况下,我们使用线程的时候就去创建一个线程,这样实现起来非常简便,但是就会有一个问题: 如果并发的线程数量很多,并且每个线程都是执行一个时间很短的任务就结束了,这样频繁创建线程就会大大降低系统的 ...
- imperva 非交互式导入导出配置
非交互使用模式full_expimp.sh可以导出/导入手动使用交互式CLI 在root的命令行下执行: 例子:导出:# full_expimp.sh --operation=1 --pwd=密码 - ...
- python3之pymysql模块
1.python3 MySQL数据库链接模块 PyMySQL 是在 Python3.x 版本中用于连接 MySQL 服务器的一个库,Python2中则使用mysqldb. PyMySQL 遵循 Pyt ...
- 002_curl及postman专题
一. 步骤 1: 下载cURL工具 使用您的Windows机器从cURL web站点下载最新版本的cURL: (1) 通常情况下,多数的Windows用户可以从官网下载页面http://curl.ha ...
- centos6.9系统优化
仅供参考 有道云笔记链接->
- 12 Release History for go go语言的版本历史
Release History Release Policy go1.11 (released 2018/08/24) go1.10 (released 2018/02/16) Minor revis ...
- centos7 安装java和tomcat9
centos7 安装java 下载好java安装包后,首先是解压,然后配置环境变量. 在usr下新建Java文件夹,把java解压到Java文件夹中 新建文件夹 # mkdir /usr/Java 键 ...
- Linux下配置Samba服务器全过程
Linux下配置Samba服务器全过程 user级别的samba的配置 http://www.linuxidc.com/Linux/2014-11/109234.htm http://www.linu ...