为什么老是碰上

扩展欧几里德算法

( •̀∀•́ )最讨厌数论了

看来是时候学一学了

度娘百科说:

首先, ax+by = gcd(a, b) 这个公式肯定有解 (( •̀∀•́ )她说根据数论中的相关定理可以证明,反正我信了)

所以 ax+by = gcd(a, b) * k 也肯定有解 (废话,把x和y乘k倍就好了)

所以,这个公式我们写作ax+by = d,(gcd(a, b) | d)

gcd(a, b) | d,表示d能整除gcd,这个符号在数学上经常见

那么已知 a,b 求 一组解 x,y 满足 ax+by = gcd(a, b) 这个公式

 #include<cstdio>
typedef long long LL;
void extend_Eulid(LL a, LL b, LL &x, LL &y, LL &d){
if (!b) {d = a, x = , y = ;}
else{
extend_Eulid(b, a % b, y, x, d);
y -= x * (a / b);
}
}
int main(){
LL a, b, d, x, y;
while(~scanf("%lld%lld", &a, &b)){
extend_Eulid(a, b, x, y, d);
printf("%lld*a + %lld*b = %lld\n", x, y, d);
}
}

有些人喜欢极度简化,这是病,得治(,,• ₃ •,,)比如在下

 void ex_gcd(LL a, LL b, LL &d, LL &x, LL &y){
if(!b){d = a; x = ; y = ;}
else{ex_gcd(b, a%b, d, y, x); y -= x*(a/b);}
}

连名字都简化了。。。

( •̀∀•́ )解完了

睡觉~~~

ACM数论之旅4---扩展欧几里德算法(欧几里德(・∀・)?是谁?)的更多相关文章

  1. acm数论之旅(转载) -- 逆元

    ACM数论之旅6---数论倒数,又称逆元(我整个人都倒了( ̄﹏ ̄))   数论倒数,又称逆元(因为我说习惯逆元了,下面我都说逆元) 数论中的倒数是有特别的意义滴 你以为a的倒数在数论中还是1/a吗 ( ...

  2. acm数论之旅--中国剩余定理

    ACM数论之旅9---中国剩余定理(CRT)(壮哉我大中华╰(*°▽°*)╯)   中国剩余定理,又名孙子定理o(*≧▽≦)ツ 能求解什么问题呢? 问题: 一堆物品 3个3个分剩2个 5个5个分剩3个 ...

  3. acm数论之旅--欧拉函数的证明

    随笔 - 20  文章 - 0  评论 - 73 ACM数论之旅7---欧拉函数的证明及代码实现(我会证明都是骗人的╮( ̄▽ ̄)╭) https://blog.csdn.net/chen_ze_hua ...

  4. acm数论之旅--组合数(转载)

    随笔 - 20  文章 - 0  评论 - 73 ACM数论之旅8---组合数(组合大法好(,,• ₃ •,,) )  补充:全错排公式:https://blog.csdn.net/Carey_Lu/ ...

  5. acm数论之旅--数论四大定理

    ACM数论之旅5---数论四大定理(你怕不怕(☆゚∀゚)老实告诉我)   (本篇无证明,想要证明的去找度娘)o(*≧▽≦)ツ ----------数论四大定理--------- 数论四大定理: 1.威 ...

  6. ACM数论之旅6---数论倒数,又称逆元(我整个人都倒了( ̄﹏ ̄))

    数论倒数,又称逆元(因为我说习惯逆元了,下面我都说逆元) 数论中的倒数是有特别的意义滴 你以为a的倒数在数论中还是1/a吗 (・∀・)哼哼~天真 先来引入求余概念 (a +  b) % p = (a% ...

  7. acm数论之旅---扩展欧几里得算法

    度娘百科说: 首先, ax+by = gcd(a, b) 这个公式肯定有解 (( •̀∀•́ )她说根据数论中的相关定理可以证明,反正我信了) 所以 ax+by = gcd(a, b) * k 也肯定 ...

  8. ACM数论之旅1---素数(万事开头难(>_<))

    前言:好多学ACM的人都在问我数论的知识(其实我本人分不清数学和数论有什么区别,反正以后有关数学的知识我都扔进数论分类里面好了) 于是我就准备写一个长篇集,把我知道的数论知识和ACM模板都发上来(而且 ...

  9. acm数论之旅(转载)--素数

    https://www.cnblogs.com/linyujun/p/5198832.html 前言:好多学ACM的人都在问我数论的知识(其实我本人分不清数学和数论有什么区别,反正以后有关数学的知识我 ...

随机推荐

  1. centos 中sshd莫名其妙不见了?

    发现问题 遇到问题:首先莫要慌:事出有因:先检查一波: 首先呢,看一下/var/log/yum.log  是否有误删的记录: 如有被误删的操作的话:可以去看看日志:到底咋回事: 然后么 yum ins ...

  2. REST API 开发

    本文我们将使用Spring MVC 4实现 CRUD Restful WebService , 通过RestTemplate写一个 REST 客户端,定义这些服务. 我们也可以通过外部的一些客户端来测 ...

  3. python基础开发环境Pycharm的详细使用方法

    PyCharm是由JetBrains打造的一款Python IDE(集成开发环境) 1. 创建Python文件 2. pycharm的操作界面 3. PyCharm修改字体大小的方式 4. pycha ...

  4. 《SLAM十四讲》个人学习知识点梳理

    0.引言 从六月末到八月初大概一个月时间一直在啃SLAM十四讲[1]这本书,这本书把SLAM中涉及的基本知识点都涵盖了,所以在这里做一个复习,对这本书自己学到的东西做一个梳理. 书本地址:http:/ ...

  5. implode函数的升级版,将一个多维数组的值转化为字符串

    /** * implode函数的升级版 * 将一个多维数组的值转化为字符串 * @param $glue * @param $data * @return string */function mult ...

  6. [C++]linux下实现rm()函数删除文件或目录

    转载请注明原创:http://www.cnblogs.com/StartoverX/p/4600866.html 在linux下有两个函数可以用来删除文件: #include <unistd.h ...

  7. 1.VBA 基本概念——《Excel VBA 程序开发自学宝典》

    1.1 常见对象及含义 对象名 含义 application 整个Excel应用程序 window 窗口 worksheet  一个工作表 sheets 指定工作簿的所有工作表的合集 shaperan ...

  8. 如何布局您的PC站和移动站,并表达两者之间内容的对应关系

      如何布局您的PC站和移动站,并表达两者之间内容的对应关系 目前较流量的PC站与移动站配置方式有三种,百度站在搜索引擎角度将这三种分别称为跳转适配.代码适配和自适应,以下为这三种配置方式的名词解释及 ...

  9. vue 子组件传值给父组件

    子组件通过this.$emit("event",[args,....]),传值给父组件 HTML部分: <div id="app"> <tmp ...

  10. shell解析ini格式文件

    功能 本脚本实现了ini文件中的查询修改指定value 百度云连接地址 链接:https://pan.baidu.com/s/12_T5yST7Y3L1H4_MkVEcvA 密码:fo5p 解压后先看 ...