为什么老是碰上

扩展欧几里德算法

( •̀∀•́ )最讨厌数论了

看来是时候学一学了

度娘百科说:

首先, ax+by = gcd(a, b) 这个公式肯定有解 (( •̀∀•́ )她说根据数论中的相关定理可以证明,反正我信了)

所以 ax+by = gcd(a, b) * k 也肯定有解 (废话,把x和y乘k倍就好了)

所以,这个公式我们写作ax+by = d,(gcd(a, b) | d)

gcd(a, b) | d,表示d能整除gcd,这个符号在数学上经常见

那么已知 a,b 求 一组解 x,y 满足 ax+by = gcd(a, b) 这个公式

 #include<cstdio>
typedef long long LL;
void extend_Eulid(LL a, LL b, LL &x, LL &y, LL &d){
if (!b) {d = a, x = , y = ;}
else{
extend_Eulid(b, a % b, y, x, d);
y -= x * (a / b);
}
}
int main(){
LL a, b, d, x, y;
while(~scanf("%lld%lld", &a, &b)){
extend_Eulid(a, b, x, y, d);
printf("%lld*a + %lld*b = %lld\n", x, y, d);
}
}

有些人喜欢极度简化,这是病,得治(,,• ₃ •,,)比如在下

 void ex_gcd(LL a, LL b, LL &d, LL &x, LL &y){
if(!b){d = a; x = ; y = ;}
else{ex_gcd(b, a%b, d, y, x); y -= x*(a/b);}
}

连名字都简化了。。。

( •̀∀•́ )解完了

睡觉~~~

ACM数论之旅4---扩展欧几里德算法(欧几里德(・∀・)?是谁?)的更多相关文章

  1. acm数论之旅(转载) -- 逆元

    ACM数论之旅6---数论倒数,又称逆元(我整个人都倒了( ̄﹏ ̄))   数论倒数,又称逆元(因为我说习惯逆元了,下面我都说逆元) 数论中的倒数是有特别的意义滴 你以为a的倒数在数论中还是1/a吗 ( ...

  2. acm数论之旅--中国剩余定理

    ACM数论之旅9---中国剩余定理(CRT)(壮哉我大中华╰(*°▽°*)╯)   中国剩余定理,又名孙子定理o(*≧▽≦)ツ 能求解什么问题呢? 问题: 一堆物品 3个3个分剩2个 5个5个分剩3个 ...

  3. acm数论之旅--欧拉函数的证明

    随笔 - 20  文章 - 0  评论 - 73 ACM数论之旅7---欧拉函数的证明及代码实现(我会证明都是骗人的╮( ̄▽ ̄)╭) https://blog.csdn.net/chen_ze_hua ...

  4. acm数论之旅--组合数(转载)

    随笔 - 20  文章 - 0  评论 - 73 ACM数论之旅8---组合数(组合大法好(,,• ₃ •,,) )  补充:全错排公式:https://blog.csdn.net/Carey_Lu/ ...

  5. acm数论之旅--数论四大定理

    ACM数论之旅5---数论四大定理(你怕不怕(☆゚∀゚)老实告诉我)   (本篇无证明,想要证明的去找度娘)o(*≧▽≦)ツ ----------数论四大定理--------- 数论四大定理: 1.威 ...

  6. ACM数论之旅6---数论倒数,又称逆元(我整个人都倒了( ̄﹏ ̄))

    数论倒数,又称逆元(因为我说习惯逆元了,下面我都说逆元) 数论中的倒数是有特别的意义滴 你以为a的倒数在数论中还是1/a吗 (・∀・)哼哼~天真 先来引入求余概念 (a +  b) % p = (a% ...

  7. acm数论之旅---扩展欧几里得算法

    度娘百科说: 首先, ax+by = gcd(a, b) 这个公式肯定有解 (( •̀∀•́ )她说根据数论中的相关定理可以证明,反正我信了) 所以 ax+by = gcd(a, b) * k 也肯定 ...

  8. ACM数论之旅1---素数(万事开头难(>_<))

    前言:好多学ACM的人都在问我数论的知识(其实我本人分不清数学和数论有什么区别,反正以后有关数学的知识我都扔进数论分类里面好了) 于是我就准备写一个长篇集,把我知道的数论知识和ACM模板都发上来(而且 ...

  9. acm数论之旅(转载)--素数

    https://www.cnblogs.com/linyujun/p/5198832.html 前言:好多学ACM的人都在问我数论的知识(其实我本人分不清数学和数论有什么区别,反正以后有关数学的知识我 ...

随机推荐

  1. 使用JDBC连接MySQL数据库

    Java数据库连接(Java DataBase connectivity简称JDBC) 下载JDBC驱动:https://dev.mysql.com/downloads/connector/j/ Wi ...

  2. (转)js数组与字符串的相互转换方法

    一.数组转字符串 需要将数组元素用某个字符连接成字符串,示例代码如下: var a, b; a = new Array(0,1,2,3,4); b = a.join("-"); 二 ...

  3. Linux下的消息队列

    文章链接:https://blog.csdn.net/qq_38646470/article/details/80169406

  4. Altium中Logo的导入方法及大小调整

    Altium中Logo的导入方法及大小调整   LOGO识别性是企业标志的重要功能之一,特点鲜明.容易辨认,很多客户需要在PCB设计阶段导入LOGO标示归属特性.如果LOGO是CAD图纸,可以直接按照 ...

  5. 自动化运维工具saltstack05 -- 之salt-ssh模式

    salt-ssh模式 1.说明: salt-ssh即通过ssh得方式进行管理,不需要安装salt-minion, salt-ssh 用的是sshpass进行密码交互的. 2.salt-ssh得局限性 ...

  6. UnityShader学习笔记1 — — 入门知识整理

    注:资料整理自<Unity Shader入门精要>一书 一.渲染流程概念阶段:  应用阶段:(1)准备好场景数据:(如摄像机位置,物体以及光源等)   (2)粗粒度剔除(Culling): ...

  7. 容器类 - bootStrap4常用CSS笔记

    .container 居中容器类,最大宽度默认为1200px.左右间隙15px .container-fluid 全屏容器类. .jumbotron 创建一个大的灰色的圆角背景框 .jumbotron ...

  8. 从零开始的Python学习 知识补充sorted

    sorted()方法 sorted()可用于任何一个可迭代对象. 原型为sorted(iterable, cmp=None, key=None, reverse=False) iterable:一个可 ...

  9. 某简单易懂的人脸识别 API 的开发环境搭建和简易教程

    最近接了个人脸识别相关的项目,是基于某个非常简单易懂的人脸识别 API:face_recognition 做的.这个库接口非常傻瓜,很适合新手上手,而且可以研究其源码来学习 dlib 这个拥有更加灵活 ...

  10. openssl在多平台和多语言之间进行RSA加解密注意事项

    首先说一下平台和语言: 系统平台为CentOS6.3,RSA加解密时使用NOPADDING进行填充 1)使用C/C++调用系统自带的openssl 2)Android4.2模拟器,第三方openssl ...