【题解】JSOI2015染色问题
好像这个容斥还是明显的。一共有三个要求,可以用组合数先满足一个,再用容斥解决剩下的两个维。(反正这题数据范围这么小,随便乱搞都可以)。用 \(a[k][i]\) 表示使用 \(k\) 种颜色,至少有 \(i\) 列没有染色的方案数,可以容斥预处理得到使用 \(k\) 种颜色染色使得每行每列均被染色的方案数。然后再容斥一下保证每种颜色都用上就可以了。
#include <bits/stdc++.h>
using namespace std;
#define maxn 500
#define CNST 450
#define int long long
#define mod 1000000007
int n, m, K, ans, f[maxn];
int S[maxn], C[maxn][maxn]; int read()
{
int x = , k = ;
char c; c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} int Qpow(int x, int timer)
{
int base = ; if(timer < ) return ;
for(; timer; timer >>= , x = x * x % mod)
if(timer & ) base = base * x % mod;
return base;
} void Up(int &x, int y) { x = (x + y) % mod; }
void Pre()
{
for(int i = ; i < CNST; i ++) C[i][] = ;
for(int i = ; i < CNST; i ++)
for(int j = ; j < CNST; j ++)
Up(C[i][j], (C[i - ][j - ] + C[i - ][j]) % mod);
} int Get(int X)
{
int ret = ;
for(int i = ; i <= m; i ++)
S[i] = Qpow((Qpow(X + , m - i) - ), n) % mod;
for(int i = ; i <= m; i ++)
Up(ret, C[m][i] * ((i & ) ? -S[i] : S[i]) % mod);
return ret;
} signed main()
{
n = read(), m = read(), K = read();
Pre(); for(int i = ; i <= K; i ++) f[K - i] = Get(i);
for(int i = ; i <= K; i ++)
Up(ans, C[K][i] * ((i & ) ? -f[i] : f[i]) % mod);
printf("%lld\n", (ans + mod) % mod);
return ;
}
【题解】JSOI2015染色问题的更多相关文章
- 【BZOJ4487】[JSOI2015]染色问题(容斥)
[BZOJ4487][JSOI2015]染色问题(容斥) 题面 BZOJ 题解 看起来是一个比较显然的题目? 首先枚举一下至少有多少种颜色没有被用到过,然后考虑用至多\(k\)种颜色染色的方案数. 那 ...
- bzoj4487[Jsoi2015]染色问题 容斥+组合
4487: [Jsoi2015]染色问题 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 211 Solved: 127[Submit][Status ...
- BZOJ4487 [Jsoi2015]染色问题
BZOJ4487 [Jsoi2015]染色问题 题目描述 传送门 题目分析 发现三个限制,大力容斥推出式子是\(\sum_{i=0}^{N}\sum_{j=0}^{M}\sum_{k=0}^{C}(- ...
- 【bzoj4487】[Jsoi2015]染色问题 容斥原理
题目描述 棋盘是一个n×m的矩形,分成n行m列共n*m个小方格.现在萌萌和南南有C种不同颜色的颜料,他们希望把棋盘用这些颜料染色,并满足以下规定: 1. 棋盘的每一个小方格既可以染色(染成C种颜色中 ...
- [JSOI2015]染色游戏
Description 棋盘是一个n×m的矩形,分成n行m列共n*m个小方格. 现在萌萌和南南有C种不同颜色的颜料,他们希望把棋盘用这些颜料染色,并满足以下规定: 1.棋盘的每一个小方格既可以染色(染 ...
- [bzoj4487][Jsoi2015]染色_容斥原理
染色 bzoj-4487 Jsoi-2015 题目大意:给你一个n*m的方格图,在格子上染色.有c中颜色可以选择,也可以选择不染.求满足条件的方案数,使得:每一行每一列都至少有一个格子被染色,且所有的 ...
- 2019.02.09 bzoj4487: [Jsoi2015]染色问题(容斥原理)
传送门 题意简述: 用ccc中颜色给一个n∗mn*mn∗m的方格染色,每个格子可涂可不涂,问最后每行每列都涂过色且ccc中颜色都出现过的方案数. 思路: 令fi,j,kf_{i,j,k}fi,j,k ...
- 【BZOJ4487】[JSOI2015] 染色问题(高维容斥)
点此看题面 大致题意: 有一个\(n*m\)的矩形,先让你用\(C\)种颜色给它染色.每个格子可染色可不染色,但要求每行每列至少有一个小方格被染色,且每种颜色至少出现一次.求方案数. 高维容斥 显然题 ...
- bzoj 4487: [Jsoi2015]染色问题
先贴一个题解吧,最近懒得要死2333,可能是太弱的原因吧,总是扒题解,(甚至连题解都看不懂了),blog也没更新,GG http://blog.csdn.net/werkeytom_ftd/artic ...
随机推荐
- Qt 利用XML文档,写一个程序集合 四
接上一篇https://www.cnblogs.com/DreamDog/p/9214067.html 启动外部程序 这里简单了,直接上代码吧 connect(button,&MPushBut ...
- 模拟websocket推送消息服务mock工具二
模拟websocket推送消息服务mock工具二 在上一篇博文中有提到<使用electron开发一个h5的客户端应用创建http服务模拟后端接口mock>使用electron创建一个模拟后 ...
- jsp内置对象 转发与重定向的区别
jsp 内置对象 转发与重定向的比较 重定向和转发有一个重要的不同:当使用转发时,JSP容器将使用一个内部的方法来调用目标页面,新的页面继续处理同一个请求,而浏览器将不会知道这个过程. 与之相反,重 ...
- connect by prior id= pid start with id='1' 树结构查询
基础表创建: with temp as ( ' id, '' pid from dual union all ' pid from dual union all ' pid from dual uni ...
- 软工1816 · Beta冲刺(7/7)
团队信息 队名:爸爸饿了 组长博客:here 作业博客:here 组员情况 组员1(组长):王彬 过去两天完成了哪些任务 协助完成安卓端的整合 完成安卓端的美化 协助制作宣传视频 接下来的计划 &am ...
- angularJS1笔记-(7)-控制器的合理使用(显示和隐式的依赖注入)
AngularJS依赖注入 1.隐式注入:不需要开发人员干预,angularJS自动根据参数的名称识别和注入数据 app.controller("myCtrl".function( ...
- DispatcherServlet的作用
DispatcherServlet是前端控制器设计模式的实现,提供Spring Web MVC的集中访问点,而且负责职责的分派,而且与Spring IoC容器无缝集成,从而可以获得Spring的所有好 ...
- Redis有序集内部实现原理分析
Redis技术交流群481804090 Redis:https://github.com/zwjlpeng/Redis_Deep_Read Redis中支持的数据结构比Memcached要多的多啦,如 ...
- mysubmail 短信报警
https://www.mysubmail.com/chs/documents/developer/YPWD84 文本文档 官网:www.mysubmail.com 操作流程:快速接入短信 AP ...
- JabRef学习笔记(一)
JabRef简介 JabRef is an open source bibliography reference manager. The native file format used by Jab ...