3787: Gty的文艺妹子序列

Time Limit: 50 Sec  Memory Limit: 256 MB
Submit: 186  Solved: 58
[Submit][Status][Discuss]

Description

Autumn终于会求区间逆序对了!Bakser神犇决定再考验一下他,他说道:
 
“在Gty的妹子序列里,某个妹子的美丽度可也是会变化的呢。你还能求出某个区间
 
中妹子们美丽度的逆序对数吗?当然,为了方便,这次我们规定妹子们的美丽度在
 
[1,n]中。仍然强制在线。”
 
Autumn需要你的帮助。
 
给定一个正整数序列a(1<=ai<=n),支持单点修改,对于每次询问,输出al...ar中
 
的逆序对数,强制在线。

Input

第一行包括一个整数n(1<=n<=50000),表示数列a中的元素数。
 
第二行包括n个整数a1...an(1<=ai<=n)。
 
接下来一行包括一个整数m(1<=m<=50000),表示操作的个数。
 
接下来m行,每行包括3个整数。
 
0 L R (1<=L<=R<=n) 询问[L,R]中的逆序对数。
 
1 p v (1<=p<=n,1<=v<=n) 将p位置的数修改为v。
 
L,R,p,v 都需要异或上一次的答案,保证异或之后的值是合法的。
 
保证涉及的所有数在int内。

Output

对每个询问,单独输出一行,表示al...ar中的逆序对数。对每个询问,单独输出一行,表示al...ar中的逆序对数。

Sample Input

10
1 7 5 6 9 4 9 4 4 7
10
0 4 6
0 5 8
0 1 10
1 25 19
0 19 25
1 14 4
0 12 12
0 2 5
1 8 7
1 1 10

Sample Output

2
3
16
13
0
2

HINT

 

Source

[Submit][Status][Discuss]

又是分块,然后LincHpin给出了一个和PoPoQQQ很像的做法,我则选择另外的一种。客观地讲,两者的理论复杂度都是$O(N\sqrt{N}log(N))$,代码难度也都那样(不会太简单)。

大爷的方法

预处理

先分块,预处理块内逆序对,维护块内权值。然后G[i][j]表示第i块和第j块形成的逆序对,即统计了所有一个在第i块,一个在第j块的逆序对,这个也是一开始预处理一下,第一维暴力,第二维树状数组维护。因为妹子颜值的大小不会太大,所以可以开个数组E[i][j]表示前i块内颜值为j的妹子个数,简单与处理一下就有了。还需要用S[i][j]表示前i块内颜值小于等于j的妹子数量,类似于E[i][j]的前缀和,第一维暴力,第二维树状数组维护。

查询 

查询区间分为两种:左右边界处的零碎妹子,中间块内的大把妹子。

零碎妹子内部暴力,和中间妹子产生的逆序对直接通过E,S数组求出来,复杂度$O(\sqrt{N}log(N))$。

中间大把妹子也属于多个分块,先加上每个分块内部的逆序对,再加上$\sum{G[i][j]}$,这个第一维暴力枚举,第二维在树状数组中查询,复杂度$O(\sqrt{N}log(N))$。

修改

修改一个妹子的颜值时,块内逆序对的变化可以直接对块进行暴力重做,复杂度$O(\sqrt{N}log(N))$,改变该块的权值线段树,$O(log(N))$。

考虑对G[i][j]的影响,只有$O(\sqrt{N})$个G[i][j]包含该妹子(即该妹子所在的块),因为每个块维护了权值线段树,单个改动是$O(log(N))$的,所以总复杂度$O(\sqrt{N}log(N))$。

考虑对E[i][j]的影响,只有$O(\sqrt{N})$个E[i][j]需要改动,单个改动是$O(1)$的,总的复杂度是$O(\sqrt{N})$。

考虑对S[i][j]的影响,只有$O(\sqrt{N})$个E[i][j]需要改动,单个改动是$O(log(N))$的,总的复杂度是$O(\sqrt{N}log(N))$。

蒟蒻(小生)的方法


基本的分块还是和大爷一样的,G[i][j]表示从第i块到第j块的区间内的逆序对数,用树状数组套主席树维护区间权值分布并支持单点修改。

查询就是直接取出中间的大把妹子,从G[i][j]中查询答案,暴力扫描两侧的零碎妹子,用权值主席树处理其和大把妹子产生的逆序对。

修改主要是考虑到G[i][j]的问题。大爷起初认为G[i][j]一共有N个,所以不能快速修改。但是发现可以这么考虑:

设修改妹子在块k

所有i<k的G都会被修改,暴力枚举一下i的话,对于一个i,只有满足j>k的G[i][j]才会被累加上i到k这一区间产生的改变量,对于一个i这是个区间加问题。

所有j>k的G都会被修改,暴力枚举一下j的话,对于一个j,只有满足i<k的G[i][j]才会被累加上k到j这一区间产生的改变量,对于一个j这是个区间加问题。

所以分开维护固定i,j时产生的改变量,做$O(\sqrt{N})$次区间加(线段树或树状数组支持),每次取出G[i][j]的时候都额外查询一下[i][j]上的标记即可。

@Author: YouSiki

BZOJ 3787: Gty的文艺妹子序列的更多相关文章

  1. BZOJ 3787: Gty的文艺妹子序列 [分块 树状数组!]

    传送门 题意:单点修改,询问区间内逆序对数,强制在线 看到加了!就说明花了不少时间.... 如果和上题一样预处理信息,用$f[i][j]$表示块i到j的逆序对数 强行修改的话,每个修改最多会修改$(\ ...

  2. BZOJ 3787 Gty的文艺妹子序列(分块+树状数组+前缀和)

    题意 给出n个数,要求支持单点修改和区间逆序对,强制在线. n,m<=50000 题解 和不带修改差不多,预处理出smaller[i][j]代表前i块小于j的数的数量,但不能用f[i][j]代表 ...

  3. BZOJ3787:Gty的文艺妹子序列(分块,树状数组)

    Description Autumn终于会求区间逆序对了!Bakser神犇决定再考验一下他,他说道: “在Gty的妹子序列里,某个妹子的美丽度可也是会变化的呢.你还能求出某个区间中妹子们美丽度的逆序对 ...

  4. BZOJ3787 : Gty的文艺妹子序列

    将序列分成$\sqrt{n}$块,预处理出每两块之间的逆序对数,以及ap[i]表示前i块内数字出现次数的树状数组 预处理:$O(n\sqrt{n}\log n)$ 修改时,ap[i]可以在$O(\sq ...

  5. BZOJ3787 gty的文艺妹子序列 【树状数组】【分块】

    题目分析: 首先这种乱七八糟的题目就分块.然后考虑逆序对的统计. 一是块内的,二是块之间的,三是一个块内一个块外,四是都在块外. 令分块大小为$S$. 块内的容易维护,单次维护时间是$O(S)$. 块 ...

  6. 【分块】【树状数组】bzoj3787 Gty的文艺妹子序列

    题解懒得自己写了,Orz一发wangxz神犇的: http://bakser.gitcafe.com/2014/12/04/bzoj3787-Gty%E7%9A%84%E6%96%87%E8%89%B ...

  7. [BZOJ 3731] Gty的超级妹子树 (树分块)

    [BZOJ 3731] Gty的超级妹子树 (树分块) 题面 给出一棵树(或森林),每个点都有一个值.现在有四种操作 1.查询x子树里>y的值有多少个 2.把点x的值改成y 3.添加一个新节点, ...

  8. BZOJ 3809Gty的二逼妹子序列 解题报告+data marker

    --BZOJ http://www.lydsy.com/JudgeOnline/problem.php?id=3809 考虑对l,r跑莫队,对一组维护美丽度出现次数的桶修改, 然后把桶序列用分块维护查 ...

  9. BZOJ 3809: Gty的二逼妹子序列

    3809: Gty的二逼妹子序列 Time Limit: 80 Sec  Memory Limit: 28 MBSubmit: 1387  Solved: 400[Submit][Status][Di ...

随机推荐

  1. 010 --MySQL查询优化器的局限性

    MySQL的万能"嵌套循环"并不是对每种查询都是最优的.不过还好,mysql查询优化器只对少部分查询不适用,而且我们往往可以通过改写查询让mysql高效的完成工作.在这我们先来看看 ...

  2. java.io.tmpdir指定的路径在哪?

    Java.io.tmpdir介绍 System.getproperty(“java.io.tmpdir”)是获取操作系统缓存的临时目录,不同操作系统的缓存临时目录不一样, 在Windows的缓存目录为 ...

  3. asp.net core如何修改程序监听的端口

    asp.net core 默认监听的5000和5001端口,要修改为其他端口有几种方法. 1.硬编码.优点是直观,缺点是每次修改端口都得重新编译程序. public class Program { p ...

  4. 在Web Page中包含PHP代码

    PHP代码可以出现在Web Page的任何位置,甚至在HTML的标签里面也可以.有4中方式在Web Page中包含PHP代码: 使用<?php ... ?>标签 <!doctype ...

  5. Windows下Visual Studio2017之AI环境搭建

    本博客主要包含以下3点: AI简介及本博客主要目的 环境介绍及安装原因 搭建环境及检验是否安装成功 离线模型的训练 时间分配:   时间 时长(分钟) 收集资料+写博客 6.12 11:28-12:2 ...

  6. Daily Scrum6 11.10

    今日任务: 徐钧鸿:codingcook的sql相关内容,并在进行复查张艺:继续用户管理部分代码黄可嵩:学习搜索的知识,继续进行搜索的移植和响应徐方宇:动态控件和页面间信息传递以及页面响应事件机制试验 ...

  7. 第二阶段每日站立会议Forth Day

    昨天对于程序中的字体显示进行细化修改,使界面更美观 今天准备继续调试手机界面 遇到的问题:上几次Tomcat运行正常,今天突然出现问题,Tomcat服务可以打开,但是无法连接到数据库

  8. WebGL学习笔记一

    学习用来做web3D的,从第一页开始学起先做2D的,接下来的程序是一个入门级的程序,可以通过在画板上的不同位置点击而获取不同颜色的点,以画板中心为坐标原点四个象限有不同的颜色,访问地址  http:/ ...

  9. 手机访问本地php项目遇到的问题及解决

    做html5的本地应用要调试后台,学了下php 按照和连j2ee的时候一样,电脑发射wifi,ipconfig..等等  发现tomcat的可以访问,apache的不能访问,搜索好久,没找到解答, j ...

  10. 第一次spring冲刺第8天

    针对这几天出现的问题,我们团队做了用户需求讨论. 1.客户类型:工作者为主,其他类型都适用的计算器软件 2.需求与满足:他们想要的是能使用简单,并且适用于工作上 3.满足度:最好后台可以提供意见反馈, ...