51nod 1183 编辑距离【线性dp+类似最长公共子序列】
第1行:字符串a(a的长度 <= 1000)。
第2行:字符串b(b的长度 <= 1000)。
输出a和b的编辑距离
kitten
sitting
3
设dp[i][j]代表a字符串前i个变形 b字符串前j个最小操作步数;
此题类型和求两字符串最长公共子序列有相同部分,但最长公共序列对相同字符位置没有要求,但在此题中则是解题关键,
若两位置相同,则不需任何操作,但若两相同部分之间相错n位,则需增加n次操作,同时还要考虑最优解;
同时dp[i][0]=dp[0][i]=i;
(1) 必须 S[i] == T[j], 这时前i – 1和j – 1位都已经对齐了,这部分肯定要最少扣分。这种情况下最少的扣分是dp(i-1,j-1)
(2) 和(1)类似,S[i]≠T[j],这种情况下最少的扣分是dp(i - 1, j – 1) + 1
(3) S的前i位和T的前(j – 1)位已经对齐了,这部分扣分也要最少。这种情况下最少的扣分是dp(i, j - 1) + 1
(4) S的前(i - 1)位已经和T的前j位对齐了,这部分扣分要最少。这种情况下最少的扣分是dp(i - 1, j) + 1
这样就能得到状态转移方程:
dp(i,j) = min(dp(i – 1, j – 1) + ( S[i] == T[j] ? 0:1 ), dp(i – 1,j ) + 1, dp(i, j – 1) + 1)
【代码】:
#include <bits/stdc++.h>
using namespace std;
const int AX = 1e3+; int dp[AX][AX];
char a[AX];
char b[AX]; int main(){
while(~scanf("%s%s",a,b)){
memset(dp,,sizeof(dp));
int n = strlen(a);
int m = strlen(b);
for( int i = ; i <= n ; i++ ){
dp[i][] = i;
}
for( int j = ; j <= m ; j++ ){
dp[][j] = j;
}
for( int i = ; i <= n ; i++ ){
for( int j = ; j <= m ;j++ ){
if( a[i-] != b[j-] )
dp[i][j] = min(dp[i-][j-],min(dp[i-][j],dp[i][j-])) + ;
else dp[i][j] = dp[i-][j-];
}
}
printf("%d\n",dp[n][m]);
}
return ;
}
51nod 1183 编辑距离【线性dp+类似最长公共子序列】的更多相关文章
- 1. 线性DP 1143. 最长公共子序列
最经典双串: 1143. 最长公共子序列 (LCS) https://leetcode-cn.com/problems/longest-common-subsequence/submissions/ ...
- POJ-1458.CommonSubsequence.(DP:最长公共子序列裸题)
本题大意:给出两个字符串,让你求出最长公共子序列的长度并输出. 本题思路:本题是经典的DP问题,由于是两个字符串,那么我们就用一个二维数组来进行区分,用dp[ i ][ j ]来表示在s1和s2中分别 ...
- hdu 1080 dp(最长公共子序列变形)
题意: 输入俩个字符串,怎样变换使其所有字符对和最大.(字符只有'A','C','G','T','-') 其中每对字符对应的值如下: 怎样配使和最大呢. 比如: A G T G A T G - G ...
- dp(最长公共子序列)
A subsequence of a given sequence is the given sequence with some elements (possible none) left out. ...
- 51nod 1183 - 编辑距离 - [简单DP][编辑距离问题][Levenshtein距离问题]
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1183 编辑距离,又称Levenshtein距离(也叫做Edi ...
- 1. 线性DP 300. 最长上升子序列 (LIS)
最经典单串: 300. 最长上升子序列 (LIS) https://leetcode-cn.com/problems/longest-increasing-subsequence/submission ...
- [dp]LCS最长公共子序列
https://www.51nod.com/tutorial/course.html#!courseId=4 复杂度:${\rm O}(nm)$ 转移方程: #include<bits/stdc ...
- Codeforces 1114D Flood Fill (区间DP or 最长公共子序列)
题意:给你n个颜色块,颜色相同并且相邻的颜色块是互相连通的(连通块).你可以改变其中的某个颜色块的颜色,不过每次改变会把它所在的连通块的颜色也改变,问最少需要多少次操作,使得n个颜色块的颜色相同. 例 ...
- 算法设计 - LCS 最长公共子序列&&最长公共子串 &&LIS 最长递增子序列
出处 http://segmentfault.com/blog/exploring/ 本章讲解:1. LCS(最长公共子序列)O(n^2)的时间复杂度,O(n^2)的空间复杂度:2. 与之类似但不同的 ...
随机推荐
- ACM 竞赛高校联盟 练习赛 第二场 B&C
B. 题解: 枚举约数即可,判断n个数能否填约数的整数倍 #include <iostream> #include <cstring> #include <cstdio& ...
- bootstrap table表格属性、列属性、事件、方法
留存一份,原文地址http://bootstrap-table.wenzhixin.net.cn/zh-cn/documentation/ 表格参数 表格的参数定义在 jQuery.fn.bootst ...
- Codeforces Round #430 (Div. 2) Vitya and Strange Lesson
D.Vitya and Strange Lesson(字典树) 题意: 给一个长度为\(n\)的非负整数序列,\(m\)次操作,每次先全局异或\(x\),再查询\(mex\) \(1<=n< ...
- error C3872: '0x3000': this character is not allowed in an identifier 解决方法
文章参考地址:http://blog.csdn.net/danxuezx/article/details/5096497 编译时遇到这个错误多半是从网上拷贝一段代码到VS里然后编译时产生的,这是因为拷 ...
- NOIP2010 引水入城 贪心+DFS
我们先把简单的不能搞死,具题意可证:每个蓄水长的管辖区域一定是连续的.证明:既然我们已经能了那么我们就可以说如果这个区间不是连续的那我们取出这个区间中间阻隔开的那一段,那么对于这一整个区间来说水源不可 ...
- 理解JavaScript的function
JavaScript中最有特色而又让你困惑的function算一个了,下面看一下常用操作: function doit(){ ..... } doit(); JavaScript中的函数我们可以把它当 ...
- Swing学习篇 API [一]Swing常用组件
1.按钮(Jbutton) Swing中的按钮是Jbutton,它是javax.swing.AbstracButton类的子类,swing中的按钮可以显示图像,并且可以将按钮设置为窗口的默认图标,而且 ...
- springboot搭建web项目(转)
转:http://blog.csdn.net/linzhiqiang0316/article/details/52589789 这几天一直在研究IDEA上面怎么搭建一个web-mvc的SpringBo ...
- Join EC2 into AD with SSM and remote powershell in AWS
1.Create joinad.ps1 $username = "ad-domain\admin" $Password = "password" $pwd = ...
- 二进制转16进制JAVA代码
public class Binary2Hex { public static void main(String[] args) { String bString ="10101000&qu ...