1183 编辑距离

基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题
 收藏
 关注
编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。
例如将kitten一字转成sitting:
sitten (k->s)
sittin (e->i)
sitting (->g)
所以kitten和sitting的编辑距离是3。俄罗斯科学家Vladimir Levenshtein在1965年提出这个概念。
给出两个字符串a,b,求a和b的编辑距离。
 
Input
第1行:字符串a(a的长度 <= 1000)。
第2行:字符串b(b的长度 <= 1000)。
Output
输出a和b的编辑距离
Input示例
kitten
sitting
Output示例
3
【分析】:

设dp[i][j]代表a字符串前i个变形 b字符串前j个最小操作步数;
此题类型和求两字符串最长公共子序列有相同部分,但最长公共序列对相同字符位置没有要求,但在此题中则是解题关键,
若两位置相同,则不需任何操作,但若两相同部分之间相错n位,则需增加n次操作,同时还要考虑最优解;
同时dp[i][0]=dp[0][i]=i;

(1) 必须 S[i] == T[j], 这时前i – 1和j – 1位都已经对齐了,这部分肯定要最少扣分。这种情况下最少的扣分是dp(i-1,j-1)
(2) 和(1)类似,S[i]≠T[j],这种情况下最少的扣分是dp(i - 1, j – 1) + 1
(3) S的前i位和T的前(j – 1)位已经对齐了,这部分扣分也要最少。这种情况下最少的扣分是dp(i, j - 1) + 1
(4) S的前(i - 1)位已经和T的前j位对齐了,这部分扣分要最少。这种情况下最少的扣分是dp(i - 1, j) + 1

这样就能得到状态转移方程:

dp(i,j) = min(dp(i – 1, j – 1) + ( S[i] == T[j] ? 0:1 ), dp(i – 1,j ) + 1, dp(i, j – 1) + 1)

【代码】:

#include <bits/stdc++.h>
using namespace std;
const int AX = 1e3+; int dp[AX][AX];
char a[AX];
char b[AX]; int main(){
while(~scanf("%s%s",a,b)){
memset(dp,,sizeof(dp));
int n = strlen(a);
int m = strlen(b);
for( int i = ; i <= n ; i++ ){
dp[i][] = i;
}
for( int j = ; j <= m ; j++ ){
dp[][j] = j;
}
for( int i = ; i <= n ; i++ ){
for( int j = ; j <= m ;j++ ){
if( a[i-] != b[j-] )
dp[i][j] = min(dp[i-][j-],min(dp[i-][j],dp[i][j-])) + ;
else dp[i][j] = dp[i-][j-];
}
}
printf("%d\n",dp[n][m]);
}
return ;
}

51nod 1183 编辑距离【线性dp+类似最长公共子序列】的更多相关文章

  1. 1. 线性DP 1143. 最长公共子序列

    最经典双串: 1143. 最长公共子序列 (LCS)  https://leetcode-cn.com/problems/longest-common-subsequence/submissions/ ...

  2. POJ-1458.CommonSubsequence.(DP:最长公共子序列裸题)

    本题大意:给出两个字符串,让你求出最长公共子序列的长度并输出. 本题思路:本题是经典的DP问题,由于是两个字符串,那么我们就用一个二维数组来进行区分,用dp[ i ][ j ]来表示在s1和s2中分别 ...

  3. hdu 1080 dp(最长公共子序列变形)

    题意: 输入俩个字符串,怎样变换使其所有字符对和最大.(字符只有'A','C','G','T','-') 其中每对字符对应的值如下: 怎样配使和最大呢. 比如: A G T G A T G -  G ...

  4. dp(最长公共子序列)

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. ...

  5. 51nod 1183 - 编辑距离 - [简单DP][编辑距离问题][Levenshtein距离问题]

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1183 编辑距离,又称Levenshtein距离(也叫做Edi ...

  6. 1. 线性DP 300. 最长上升子序列 (LIS)

    最经典单串: 300. 最长上升子序列 (LIS) https://leetcode-cn.com/problems/longest-increasing-subsequence/submission ...

  7. [dp]LCS最长公共子序列

    https://www.51nod.com/tutorial/course.html#!courseId=4 复杂度:${\rm O}(nm)$ 转移方程: #include<bits/stdc ...

  8. Codeforces 1114D Flood Fill (区间DP or 最长公共子序列)

    题意:给你n个颜色块,颜色相同并且相邻的颜色块是互相连通的(连通块).你可以改变其中的某个颜色块的颜色,不过每次改变会把它所在的连通块的颜色也改变,问最少需要多少次操作,使得n个颜色块的颜色相同. 例 ...

  9. 算法设计 - LCS 最长公共子序列&&最长公共子串 &&LIS 最长递增子序列

    出处 http://segmentfault.com/blog/exploring/ 本章讲解:1. LCS(最长公共子序列)O(n^2)的时间复杂度,O(n^2)的空间复杂度:2. 与之类似但不同的 ...

随机推荐

  1. Elasticsearch1.x 和Elasticsearch2.x 拼音分词插件lc-pinyin安装教程

    Elasticsearch1.x 基于lc-pinyin和ik分词实现 中文.拼音.同义词搜索 https://blog.csdn.net/chennanymy/article/category/60 ...

  2. [洛谷P1887]乘积最大3

    题目大意:请你找出$m$个和为$n$的正整数,他们的乘积要尽可能的大.输出字典序最小的方案 题解:对于一些数,若它们的和相同,那么越接近它们的乘积越大. 卡点:无 C++ Code: #include ...

  3. vim配置入门,到豪华版vim配置

    这几天一直研究vim的配置,许多版本总是不尽如人意,网上确实有许多优秀的文章值得参考,我的博客后面会贴上具有参考价值的博客链接,本文的将手把手教你配置一个功能详尽的vim. 首先你要明白的是linux ...

  4. BZOJ 2005 2005: [Noi2010]能量采集 | 容斥原理

    题目: http://www.lydsy.com/JudgeOnline/problem.php?id=2005 题解: http://blog.csdn.net/popoqqq/article/de ...

  5. hdu 6203 ping ping ping(LCA+树状数组)

    hdu 6203 ping ping ping(LCA+树状数组) 题意:给一棵树,有m条路径,问至少删除多少个点使得这些路径都不连通 \(1 <= n <= 1e4\) \(1 < ...

  6. 洛谷 P2894 [USACO08FEB]酒店Hotel 解题报告

    P2894 [USACO08FEB]酒店Hotel 题目描述 The cows are journeying north to Thunder Bay in Canada to gain cultur ...

  7. Event loop的macro task和micro task

    macrotask在一些文章中也被直接称为task. 一个宿主环境只有一个事件循环,但可以有多个任务队列.宏任务队列(macro task)与微任务队列(micro task)就是其中之二. 每次事件 ...

  8. 【ZJ选讲·调整】

    给出n个点,m条有向边(带正权),起点S,终点T.(n<=2000,m<=30000) 再给出一个k,表示可以把最多k条边的权值调整为任意非负整数.(k<=100) 问是否可以通 ...

  9. Spring学习--HelloWorld

    Spring: Spring 是一个开源框架. Spring 是为简化企业级应用开发而生,使用 Spring 可以使简单的 JavaBean 实现以前只有 EJB 才能实现的功能. Spring 是一 ...

  10. Spring Framework框架解析(1)- 从图书馆示例来看xml文件的加载过程

    引言 这个系列是我阅读Spring源码后的一个总结,会从Spring Framework框架的整体结构进行分析,不会先入为主的讲解IOC或者AOP的原理,如果读者有使用Spring的经验再好不过.鉴于 ...