1183 编辑距离

基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题
 收藏
 关注
编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。
例如将kitten一字转成sitting:
sitten (k->s)
sittin (e->i)
sitting (->g)
所以kitten和sitting的编辑距离是3。俄罗斯科学家Vladimir Levenshtein在1965年提出这个概念。
给出两个字符串a,b,求a和b的编辑距离。
 
Input
第1行:字符串a(a的长度 <= 1000)。
第2行:字符串b(b的长度 <= 1000)。
Output
输出a和b的编辑距离
Input示例
kitten
sitting
Output示例
3
【分析】:

设dp[i][j]代表a字符串前i个变形 b字符串前j个最小操作步数;
此题类型和求两字符串最长公共子序列有相同部分,但最长公共序列对相同字符位置没有要求,但在此题中则是解题关键,
若两位置相同,则不需任何操作,但若两相同部分之间相错n位,则需增加n次操作,同时还要考虑最优解;
同时dp[i][0]=dp[0][i]=i;

(1) 必须 S[i] == T[j], 这时前i – 1和j – 1位都已经对齐了,这部分肯定要最少扣分。这种情况下最少的扣分是dp(i-1,j-1)
(2) 和(1)类似,S[i]≠T[j],这种情况下最少的扣分是dp(i - 1, j – 1) + 1
(3) S的前i位和T的前(j – 1)位已经对齐了,这部分扣分也要最少。这种情况下最少的扣分是dp(i, j - 1) + 1
(4) S的前(i - 1)位已经和T的前j位对齐了,这部分扣分要最少。这种情况下最少的扣分是dp(i - 1, j) + 1

这样就能得到状态转移方程:

dp(i,j) = min(dp(i – 1, j – 1) + ( S[i] == T[j] ? 0:1 ), dp(i – 1,j ) + 1, dp(i, j – 1) + 1)

【代码】:

#include <bits/stdc++.h>
using namespace std;
const int AX = 1e3+; int dp[AX][AX];
char a[AX];
char b[AX]; int main(){
while(~scanf("%s%s",a,b)){
memset(dp,,sizeof(dp));
int n = strlen(a);
int m = strlen(b);
for( int i = ; i <= n ; i++ ){
dp[i][] = i;
}
for( int j = ; j <= m ; j++ ){
dp[][j] = j;
}
for( int i = ; i <= n ; i++ ){
for( int j = ; j <= m ;j++ ){
if( a[i-] != b[j-] )
dp[i][j] = min(dp[i-][j-],min(dp[i-][j],dp[i][j-])) + ;
else dp[i][j] = dp[i-][j-];
}
}
printf("%d\n",dp[n][m]);
}
return ;
}

51nod 1183 编辑距离【线性dp+类似最长公共子序列】的更多相关文章

  1. 1. 线性DP 1143. 最长公共子序列

    最经典双串: 1143. 最长公共子序列 (LCS)  https://leetcode-cn.com/problems/longest-common-subsequence/submissions/ ...

  2. POJ-1458.CommonSubsequence.(DP:最长公共子序列裸题)

    本题大意:给出两个字符串,让你求出最长公共子序列的长度并输出. 本题思路:本题是经典的DP问题,由于是两个字符串,那么我们就用一个二维数组来进行区分,用dp[ i ][ j ]来表示在s1和s2中分别 ...

  3. hdu 1080 dp(最长公共子序列变形)

    题意: 输入俩个字符串,怎样变换使其所有字符对和最大.(字符只有'A','C','G','T','-') 其中每对字符对应的值如下: 怎样配使和最大呢. 比如: A G T G A T G -  G ...

  4. dp(最长公共子序列)

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. ...

  5. 51nod 1183 - 编辑距离 - [简单DP][编辑距离问题][Levenshtein距离问题]

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1183 编辑距离,又称Levenshtein距离(也叫做Edi ...

  6. 1. 线性DP 300. 最长上升子序列 (LIS)

    最经典单串: 300. 最长上升子序列 (LIS) https://leetcode-cn.com/problems/longest-increasing-subsequence/submission ...

  7. [dp]LCS最长公共子序列

    https://www.51nod.com/tutorial/course.html#!courseId=4 复杂度:${\rm O}(nm)$ 转移方程: #include<bits/stdc ...

  8. Codeforces 1114D Flood Fill (区间DP or 最长公共子序列)

    题意:给你n个颜色块,颜色相同并且相邻的颜色块是互相连通的(连通块).你可以改变其中的某个颜色块的颜色,不过每次改变会把它所在的连通块的颜色也改变,问最少需要多少次操作,使得n个颜色块的颜色相同. 例 ...

  9. 算法设计 - LCS 最长公共子序列&&最长公共子串 &&LIS 最长递增子序列

    出处 http://segmentfault.com/blog/exploring/ 本章讲解:1. LCS(最长公共子序列)O(n^2)的时间复杂度,O(n^2)的空间复杂度:2. 与之类似但不同的 ...

随机推荐

  1. AGC016C +/- Rectangle(构造)

    题目大意:给定H,W,h,w四个数,求是否满足矩阵的全部数之和和正数,h行w列之和为负数 如果h和w恰好是H,W的约数,则肯定不存在 否则肯定存在 只需要把h,w内每个元素填的足够大,然后小矩形的最后 ...

  2. Ural 1297 Palindrome(Manacher或者后缀数组+RMQ-ST)

    1297. Palindrome Time limit: 1.0 second Memory limit: 64 MB The “U.S. Robots” HQ has just received a ...

  3. 【题解】HEOI2013Eden 的新背包问题

    这题真的神奇了……蜜汁复杂度(`・ω・´) 应该是一个比较连贯的思维方式:去掉一个物品,那么我们转移的时候不考虑它就好了呗.考虑暴力:每一次都对剩余的n - 1个物品进行多重背包转移,获得答案.既然可 ...

  4. VS查看DLL接口

    应用程序Microsoft Visual Studio 2010的Visual Studio Tools文件夹中打开Visual Studio Command Prompt (2010)命令窗口 du ...

  5. 洛谷 P2168 [NOI2015]荷马史诗 解题报告

    P2168 [NOI2015]荷马史诗 题目描述 追逐影子的人,自己就是影子 --荷马 Allison 最近迷上了文学.她喜欢在一个慵懒的午后,细细地品上一杯卡布奇诺,静静地阅读她爱不释手的<荷 ...

  6. [SDOI2016] 排列计数 (组合数学)

    [SDOI2016]排列计数 题目描述 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰 ...

  7. 湖南大学第十四届ACM程序设计新生杯 Dandan's lunch

    Dandan's lunch Description: As everyone knows, there are now n people participating in the competiti ...

  8. POJ2195:Going Home (最小费用最大流)

    Going Home Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 26212   Accepted: 13136 题目链接 ...

  9. Linux 安装编译 FFMPEG

    资源准备: ffmpeg-3.4.tar.bz2 yasm-1.3.0.tar.gz 编译安装: 本人二进制包存放在 /opt/moudles中, 解压缩在 /opt/softwares 解包 ffm ...

  10. 我自己的python开发环境

    1.开发工具 eclipse 所有的版本下载: https://www.eclipse.org/downloads/index-packages.php , 我下载的是比较低的版本:https://w ...