关联规则挖掘算法在生活中的应用处处可见,几乎在各个电子商务网站上都可以看到其应用

举个简单的例子

如当当网,在你浏览一本书的时候,可以在页面中看到一些套餐推荐,本书+有关系的书1+有关系的书2+...+其他物品=多少¥

而这些套餐就很有可能符合你的胃口,原本只想买一本书的你可能会因为这个推荐而买了整个套餐

这与userCF和itemCF不同的是,前两种是推荐类似的,或者你可能喜欢的商品列表

而关联规则挖掘的是n个商品是不是经常一起被购买,如果是,那个n个商品之中,有一个商品正在被浏览(有被购买的意向),那么这时候系统是不是就能适当的将其他n-1个商品推荐给这个用户,因为其他很多用户在购买这个商品的时候会一起购买其他n-1的商品,将这n个商品做成一个套餐优惠,是不是能促进消费呢

这n个商品之间的关系(经常被用户一起购买)就是一个关联规则

下面介绍一个比较简单的关联规则算法---apriori

首先介绍几个专业名词

挖掘数据集:就是待挖掘的数据集合。这个好理解

频繁模式:频繁的出现在挖掘数据集中的模式,例如项集,子结构,子序列等。这个怎么理解呢,简单的说就是挖掘数据集中,频繁出现的一些子集数据

关联规则:例如,牛奶=>鸡蛋{支持度=2%,置信度=60%}。关联规则表示了a物品和b物品之间的关系,通过支持度和置信度来表示(当然不只是两个物品之间,也有可能是n个物品之间的关系),支持度和置信度定义的值的大小会影响到整个算法的性能

支持度:如上例子中,支持度表示,在所有用户中,一起购买了牛奶和鸡蛋的用户所占的比例是多少。支持度有一个预定义的初值(如上例中的2%),如果最终的支持度小于这个初值,那么这个牛奶和鸡蛋就不能成为一个频繁模式

置信度:如上例子中,置信度表示,在所有购买了牛奶的用户中,同时购买了鸡蛋的用户所占的比例是多少。和支持度一样,置信度也会有一个初值(上例中的60%,表示购买了牛奶的用户中60%还购买了鸡蛋),如果最终的置信度小于这个初值,那么牛奶和鸡蛋也不能成为一个频繁模式

支持度和置信度也可以用具体的数据来表示,而不一定是一个百分比

apriori算法的基本思想就是:在一个有n项的频繁模式中,它的所有子集也是频繁模式

下面来看一个购物车数据的例子

TID表示购物车的编号,每行表示购物车中对应的商品列表,商品为i1,i2,i3,i4,i5,D代表整个数据表

apriori算法的工作过程如下图:

(1)首先扫描整个数据表D,计算每个商品的支持度(出现的次数),得到候选C1表。这里将每个独立的商品都看成一个频繁模式来处理,计算它的支持度

(2)将每个商品的支持度和最小支持度作对比(最小支持度为2),小于2的商品将被过滤,得到L1。这里每个商品的支持度都大于2,所以全部保留

(3)将L1和自身进行自然连接操作,得到候选C2表。也就是进行L1*L1操作,将L1进行全排列,去掉重复的行得到候选C2(如,{i1,i1},{i2,i2}等),C2中的每个项都是由两个商品组成的

(4)再次扫描整个表D, 计算C2中每行的支持度。这里将C2中的每行(两个商品)都当做一个频繁模式计算支持度

(5)将C2中的每项支持度和最小支持度2作比较,过滤,得到L2。

(6)在将L2和自身做自然连接得到候选C3。L2*L2的结果为:{i1,i2,i3},{i1,i2,i5}{i1.i3,i5}{i2,i3,i4}{i2,i3,i5}{i2,i4,i5},{i1,i2}和{i1,i3}的结果为{i1,i2,i3},计算方式为:前n-1个项必须是一致的(就是i1),结果就是前n-1项+各自的第n项(i2,i3)。那么为什么产生的C3中只有{i1,i2,i3},{i1,i2,i5}呢,回头看看apriori算法的基本思想,如果第三个{i1,i3,i5}也是频繁模式的话,那么它的所有子集也应该是频繁模式,而在L2中无法找到{i3,i5}这个项,所以{i1.i3,i5}不是一个频繁模式,过滤。最终结果就是C3

(7)再次扫描整个表D,计算C3中每行的支持度。这里将C3中的每行(三个商品)都当做一个频繁模式计算支持度

(8)将C3中的每项支持度和最小支持度2作比较,过滤,得到L3

由于整个表D最多的项是4,而且只出现一次,所以它不可能是频繁模式,故计算到三项的频繁模式就可以结束了

算法的输出结果应该是;1,L2,L3集合,其中每个项都是一个频繁模式

例如我们得到一个频繁模式{i1,i2,i3},能够提取哪些关联规则?

{i1,i2}=>i3,表示购买了i1,i2的用户中还购买了i3的用户所占的比例。{i1,i2,i3}的出现次数为2,{i1,i2}的出现次数为4,故置信度为2/4=50%

类似的可以算出

{i1,i3}=>i2,confidence=50%

{i2,i3}=>i1,confidence=50%

i1=>{i2,i3},confidence=33%

i2=>{i1,i3},confidence=28%

i3=>{i1,i2},confidence=33%

也就是说,当一个用户购买了i1,i3的时候系统可以将i2一起当做一个套餐推荐给用户,因为这三个商品频繁的被一起购买

但是,通过对算法整个过程的描述,我们可以看到,apriori算法在计算上面的简单例子中,进行了3次全表扫描,而且在进行L1自然连接的时候,如果购物车项的数据是很大(比如100),这时候进行自然连接操作的计算量是巨大的,内存无法加载如此巨大的数据

所以apriori算法现在已经很少使用了,但是通过了解apriori算法可以让我们对关联规则挖掘进一步了解,并且可以作为一个比较基础,和其他关联规则算法做对比,从而得知哪个算法性能好,好在哪里

本文参考书:《数据挖掘概念与技术》

数据挖掘算法之关联规则挖掘(一)apriori算法的更多相关文章

  1. 关联规则挖掘之apriori算法

    前言: 众所周知,关联规则挖掘是数据挖掘中重要的一部分,如著名的啤酒和尿布的问题.今天要学习的是经典的关联规则挖掘算法--Apriori算法 一.算法的基本原理 由k项频繁集去导出k+1项频繁集. 二 ...

  2. 数据挖掘算法之-关联规则挖掘(Association Rule)

    在数据挖掘的知识模式中,关联规则模式是比较重要的一种.关联规则的概念由Agrawal.Imielinski.Swami 提出,是数据中一种简单但很实用的规则.关联规则模式属于描述型模式,发现关联规则的 ...

  3. HAWQ + MADlib 玩转数据挖掘之(七)——关联规则方法之Apriori算法

    一.关联规则简介 关联规则挖掘的目标是发现数据项集之间的关联关系,是数据挖据中一个重要的课题.关联规则最初是针对购物篮分析(Market Basket Analysis)问题提出的.假设超市经理想更多 ...

  4. 数据挖掘系列 (1) 关联规则挖掘基本概念与 Aprior 算法

    转自:http://www.cnblogs.com/fengfenggirl/p/associate_apriori.html 数据挖掘系列 (1) 关联规则挖掘基本概念与 Aprior 算法 我计划 ...

  5. 数据挖掘算法之-关联规则挖掘(Association Rule)(购物篮分析)

    在各种数据挖掘算法中,关联规则挖掘算是比較重要的一种,尤其是受购物篮分析的影响,关联规则被应用到非常多实际业务中,本文对关联规则挖掘做一个小的总结. 首先,和聚类算法一样,关联规则挖掘属于无监督学习方 ...

  6. 数据挖掘进阶之关联规则挖掘FP-Growth算法

    数据挖掘进阶之关联规则挖掘FP-Growth算法 绪 近期在写论文方面涉及到了数据挖掘,需要通过数据挖掘方法实现软件与用户间交互模式的获取.分析与分类研究.主要涉及到关联规则与序列模式挖掘两块.关联规 ...

  7. [数据挖掘课程笔记]关联规则挖掘 - Apriori算法

    两种度量: 支持度(support)  support(A→B) = count(AUB)/N (N是数据库中记录的条数) 自信度(confidence)confidence(A→B) = count ...

  8. 数据挖掘算法之关联规则挖掘(二)FPGrowth算法

    之前介绍的apriori算法中因为存在许多的缺陷,例如进行大量的全表扫描和计算量巨大的自然连接,所以现在几乎已经不再使用 在mahout的算法库中使用的是PFP算法,该算法是FPGrowth算法的分布 ...

  9. 关联规则推荐及Apriori算法

    参考这篇文章: http://blog.csdn.net/rongyongfeikai2/article/details/40457827 这条关联规则的支持度:support = P(A并B) 这条 ...

随机推荐

  1. POJ3180(有向图强连通分量结点数>=2的个数)

    The Cow Prom Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 1451   Accepted: 922 Descr ...

  2. 浅谈redux 中间件的原理

    在使用redux管理异步数据流的时候,我们会使用中间件,以redux-thunk中间件为例,我们做一下分析: 首先是构建store,我们需要以下代码进行揉入中间件的类似creatStore函数的构造: ...

  3. [ Openstack ] Openstack-Mitaka 高可用之 Rabbitmq-server 集群部署

    目录 Openstack-Mitaka 高可用之 概述    Openstack-Mitaka 高可用之 环境初始化    Openstack-Mitaka 高可用之 Mariadb-Galera集群 ...

  4. Flex slider参数详细

    $(window).load(function() { $('.flexslider').flexslider({ animation: "fade", //String: Sel ...

  5. WPF第三方控件盘点

    WPF统一的编程模型.语言和框架,实现了界面设计人员和开发人员工作可以分离的境界,鉴于WPF强大的优势,且一直是开发者关注的地方,下面和大家分享基于WPF项目开发需要用到的第三方控件,包括业界最受好评 ...

  6. (2)创建发布Maven

    一.创建maven项目 (1)命令行 mvn archetype:generate (2)选择模板默认是7 (3)输入组织号.项目名称及版本号.包名 回车确认 创建成功 二.转成idea项目 进入跟目 ...

  7. (4)java基础知识

    一.注释 java的注释方法主要有三种 1.单行注释 // 2.多行注释 /*  内容 */ 3.文档注释 /** * * */ 这种方法注释用于生成一份API文档,主要说明 方法的功能.参数.返回值 ...

  8. 模板-网络流-Dinic

    //Dinic struct Edge{ int from,to,cap,flow; Edge(){ } Edge(int a,int b,int c,int d){ from=a; to=b; ca ...

  9. POJ 3168 Barn Expansion (几何基础)

    [题目链接] http://poj.org/problem?id=3168 [题目大意] 给出一些矩形,没有相交和包含的情况,只有相切的情况 问有多少个矩形没有相切或者边角重叠 [题解] 我们将所有的 ...

  10. Java多线程——锁概念与锁优化

    为了性能与使用的场景,Java实现锁的方式有非常多.而关于锁主要的实现包含synchronized关键字.AQS框架下的锁,其中的实现都离不开以下的策略. 悲观锁与乐观锁 乐观锁.乐观的想法,认为并发 ...