概述:

  最大团问题(Maximum Clique Problem, MCP)是图论中一个经典的组合优化问题,也是一类NP完全问题。最大团问题又称为最大独立集问题(Maximum Independent Set Problem)。目前,求解MCP问题的算法主要分为两类:确定性算法和启发式算法。确定性算法有回溯法、分支限界法等,启发式算法、蚁群算法、顺序贪婪算法、DLS-MC算法和智能搜索算法等。

问题描述:

  给定无向图G=(V,E),其中V是顶点集;E是V边集。如果U属于V,且对任意两个顶点u,v∈U有(u,v)∈E,则称U是G的完全子图。G的完全子图U是G的一个团当且仅当U不包含在G的更大的完全子图中。G的最大团是指G中所含顶点数最多的团。

  如果U属于V,且对任意u,v∈U有(u,v)不属于E,则称U是G的空子图。G的空子图U是G的独立集当且仅当U不包含在G的更大的空子图中。G的最大独立集是G中所含顶点数最多的独立集。
  对于任一无向图G=(V,E),其补图G'=(V',E')定义为:V'=V,且(u,v)∈E'当且仅当(u,v)∉E。
  如果U是G的完全子图,则它也是G'的空子图,反之亦然。因此,G的团与G'的独立集之间存在一一对应的关系。特殊地,U是G的最大团当且仅当U是G'的最大独立集。

算法分析:

  无向图G的最大团和最大独立集问题都可以用回溯法在O(n2n)时间内解决。图G的最大团和最大独立集问题都可以看作是图G的顶点集V的子集选取问题。因此可用子集树表示问题的解空间。
  设当前扩展节点Z位于解空间树的第 层。在进入左子树前,必须确认从顶点 到已入选的顶点集中每一个顶点都有边相连。在进入右子树之前,必须确认还有足够多的可选择顶点使得算法有可能在右子树中找到更大的团。

算法描述:

 #include <fstream>
#include <iostream>
#include <stdlib.h>
#include <conio.h>
using namespace std; #define MAX_v 50 //定义一个最大顶点个数
typedef struct{
int a[MAX_v][MAX_v]; //无向图G的邻接矩阵
int v; //无向图G的顶点
int e; //无向图G的边
int x[]; //顶点与当前团的连接,x[i]=1 表示有连接——即x[i]==1代表在当前最大团的解内
int bestx[]; //当前最优解
int cnum; //当前团的顶点数目
int bestn; //最大团的顶点数目
}MCP; void Creat(MCP &G);
void Backtrack(MCP &G,int i); void Creat(MCP &G){
int i,j;
ifstream fin("data.txt");
if (!fin)
{
cout<<"不能打开文件:"<<"data.txt"<<endl;
exit();
}
fin>>G.v;
for (int i=;i<=G.v;i++)
for (int j=;j<=G.v;j++)
fin>>G.a[i][j];
for(i=;i<=G.v;i++) //初始化
{
G.bestx[i]=;
G.x[i]=;
G.bestn=;
G.cnum=;
}
cout<<"———回溯法求解最大团问题———"<<endl;
cout<<"输入初始化无向图矩阵为:"<<endl; //初始化
for(i=;i<=G.v;i++)
{
for(j=;j<=G.v;j++)
cout<<G.a[i][j]<<" ";
cout<<endl;
}
} void Backtrack(MCP &G,int i){
if (i>G.v){ //output()阶段
for (int j=; j<=G.v; j++)
G.bestx[j] = G.x[j]; //记录最优解
G.bestn =G.cnum;
return ;
}
//检查顶点i与当前团的连接
int OK = ;
for (int j=; j<=i ; j++)
if (G.x[j]&& G.a[i][j]==){ //G.x[j]:顶点j在当前解的最大团内;G.a[i][j]:待考察i顶点与最大团中前i-1个顶点间边的关系
//i不与j相连
OK = ;
break;
}
if (OK) { //进入左子树
G.x[i] = ;//把i加入团
G.cnum++;
Backtrack(G,i+);
G.x[i]=;
G.cnum-- ;
}
if (G.cnum+G.v- i>G.bestn){ //进入右子树——剪枝函数
G.x[i] = ;
Backtrack(G,i+);
}
} int main(){
MCP G;
Creat(G);
Backtrack(G,);
cout<<"最大团包含的顶点数为:"<<G.bestn<<endl;
cout<<"最大团方案为:( ";
for (int i=;i<=G.v;i++)
if(G.bestx[i]==){
cout<<i<<" ";
}
cout<<")"<<endl;
getch();
}

 注:问题在于这种解法只能求得其中的一个最大团解!

最大团问题百度百科:http://baike.baidu.com/view/7343867.htm

回溯法——最大团问题(Maximum Clique Problem, MCP)的更多相关文章

  1. 【最大团】【HDU1530】【Maximum Clique】

    先上最大团定义: 最大团问题(Maximum Clique Problem, MCP)是图论中一个经典的组合优化问题,也是一类NP完全问题,在国际上已有广泛的研究,而国内对MCP问题的研究则还处于起步 ...

  2. UVA - 524 Prime Ring Problem(dfs回溯法)

    UVA - 524 Prime Ring Problem Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & % ...

  3. HDU 1016 Prime Ring Problem (回溯法)

    Prime Ring Problem Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  4. UVA - 524 Prime Ring Problem(素数环)(回溯法)

    题意:输入n,把1~n组成个环,相邻两个数之和为素数. 分析:回溯法. #pragma comment(linker, "/STACK:102400000, 102400000") ...

  5. CF #296 (Div. 1) B. Clique Problem 贪心(构造)

    B. Clique Problem time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

  6. Maximum Clique

    Maximum Clique Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) To ...

  7. B. Clique Problem(贪心)

    题目链接: B. Clique Problem time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  8. [codeforces 528]B. Clique Problem

    [codeforces 528]B. Clique Problem 试题描述 The clique problem is one of the most well-known NP-complete ...

  9. CodeForces - 527D Clique Problem (图,贪心)

    Description The clique problem is one of the most well-known NP-complete problems. Under some simpli ...

随机推荐

  1. 转:ios学习指南

    著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处.作者:Franz Fang链接:https://www.zhihu.com/question/20264108/answer/302 ...

  2. Java Executor框架

    java.util.concurrent 包中包含灵活的线程池实现,但是更重要的是,它包含用于管理实现 Runnable 的任务的执行的整个框架,该框架称为 Executor 框架.该框架基于生产者- ...

  3. wordpress 插件 之 微信自动回复机器人

    微信目前越来越火,wordpress 也拥有众多用户 那我们来写个插件,把两者连起来吧! 目前已经测试完成,下面把相关的信息分享一下. 查看演示 请加我微信公众号 创新实验室,或直接扫描最底下的二维码 ...

  4. 安卓File类汇总

    File类 构造函数 參数 File(File dir,String name) File制定构造的新的File对象的路径.而String制定新的File名字 File(String path) St ...

  5. Gperftools中tcmalloc的简介和使用(转)

    TcMalloc(Thread-CachingMalloc)是google-perftools工具中的一个内存管理库,与标准的glibc库中malloc相比,TcMalloc在内存分配的效率和速度上要 ...

  6. iOS 计步器的几种实现方式

    代码地址如下:http://www.demodashi.com/demo/11658.html 这篇文章介绍两种可以获取计步数据的方法,一种是采用CMPedometer获取手机计步器数据,另一种是采用 ...

  7. Bootstrap-初步学习

    <!DOCTYPE html> <html> <head lang="en"> <meta charset="utf-8&quo ...

  8. spring学习笔记(四)

    1.aop编程 a.前置通知 .... <!-- 配置被代理的对象 -->    <bean id="test1Service" class="com. ...

  9. 工作总结 管理NuGet 程序包 中 找不到 npoi 怎么办

    在设置里 勾选 可用程序包源

  10. MySQL:系列合集

    MySQL一:初识数据库 MySQL二:库操作 MySQL三:存储引擎 MySQL四:表操作 MySQL五:数据操作 MySQL六:索引原理与慢查询优化 MySQL七:数据备份 MySQL八:视图.触 ...