spfa求次短路
思路:
先算出每个点到1的最短路d1[i],记录下路径,然后枚举最短路上的边
删掉之后再求一遍最短路,那么这时的最短路就可能是答案。
但是这个做法是错误的,可以被卡掉。
比如根据下面的例题生成的一个数据,可以完美的证明那个做法是错误的。
5 4
1 1
2 1
3 1
3 2
4 1
1 2
2 3
3 5
3 4
正确做法:
求出从起点S到每个点的最短路径ds[i],在求出每个点到终点T的最短路dt[i]
然后枚举每条边 u - > v 边权为 c
ans=min{ds[u]+c+dt[v]} ( ans!=ds[T] )
既然这样为甚么不用A*求次短路呢?
因为A*求次短路处理不了无向图啊,他会来回的走。
ε=(´ο`*)))唉
上菜:
集合位置
题目描述
每次有大的活动,大家都要在一起“聚一聚”,不管是去好乐迪,还是避风塘,或者汤姆熊,大家都要玩的痛快。还记得心语和花儿在跳舞机上的激情与释放,还记得草草的投篮技艺是如此的高超,还记得狗狗的枪法永远是'S'……还有不能忘了,胖子的歌声永远是让我们惊叫的!!
今天是野猫的生日,所以想到这些也正常,只是因为是上学日,没法一起去玩了。但回忆一下那时的甜蜜总是一种幸福嘛。。。
但是每次集合的时候都会出现问题!野猫是公认的“路盲”,野猫自己心里也很清楚,每次都提前出门,但还是经常迟到,这点让大家很是无奈。后来,野猫在每次出门前,都会向花儿咨询一下路径,根据已知的路径中,总算能按时到了。
现在提出这样的一个问题:给出n个点的坐标,其中第一个为野猫的出发位置,最后一个为大家的集合位置,并给出哪些位置点是相连的。野猫从出发点到达集合点,总会挑一条最近的路走,如果野猫没找到最近的路,他就会走第二近的路。请帮野猫求一下这条第二最短路径长度。
输入输出格式
输入格式:
第一行是两个整数n(1<=n<=200)和m,表示一共有n个点和m条路,以下n行每行两个数xi,yi,(-500<=xi,yi<=500),代表第i个点的坐标,再往下的m行每行两个整数pj,qj,(1<=pj,qj<=n),表示两个点相通。
输出格式:
只有一行包含一个数,为第二最短路线的距离(保留两位小数),如果存在多条第一短路径,则答案就是第一最短路径的长度;如果不存在第二最短路径,输出-1。
输入输出样例
输入样例#1:
3 3
0 0
1 1
0 2
1 2
1 3
2 3
输出样例#1:
2.83
说明
各个测试点1s
裸的次短路啦。
上代码。注意无解情况判定。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<queue>
#include<cstring>
#include<string>
#include<map>
#define ll long long
#define DB double
#define eps 1e-3
#define inf 2147483647
using namespace std;
inline int read()
{
int x=,w=;char ch=getchar();
while(!isdigit(ch)){if(ch=='-') w=-;ch=getchar();}
while(isdigit(ch)) x=(x<<)+(x<<)+ch-'',ch=getchar();
return x*w;
}
const int N=1e6+;
struct node{
int u,v;DB c;
int ne;
}e[N];
int h[N],tot,n,m;
DB x[N],y[N],dn[N],d1[N];
void add(int u,int v,DB c)
{
tot++;e[tot]=(node){u,v,c,h[u]};h[u]=tot;
}
DB dis(int u,int v)
{
return sqrt((x[u]-x[v])*(x[u]-x[v])+(y[u]-y[v])*(y[u]-y[v]));
}
void spfa_n()
{
queue<int>q;
bool v[N];
for(int i=;i<=n;++i) dn[i]=inf,v[i]=;
q.push(n);dn[n]=;
while(!q.empty())
{
int ff=q.front();q.pop();v[ff]=;
for(int i=h[ff];i;i=e[i].ne)
{
int rr=e[i].v;
if(dn[rr]>dn[ff]+e[i].c)
{
dn[rr]=dn[ff]+e[i].c;
if(!v[rr]) v[rr]=,q.push(rr);
}
}
}
}
void spfa_1()
{
queue<int>q;
bool v[N];
for(int i=;i<=n;++i) d1[i]=inf,v[i]=;
q.push();d1[]=;
while(!q.empty())
{
int ff=q.front();q.pop();v[ff]=;
for(int i=h[ff];i;i=e[i].ne)
{
int rr=e[i].v;
if(d1[rr]>d1[ff]+e[i].c)
{
d1[rr]=d1[ff]+e[i].c;
if(!v[rr]) v[rr]=,q.push(rr);
}
}
}
}
int main()
{
n=read();m=read();
for(int i=;i<=n;++i) scanf("%lf%lf",&x[i],&y[i]);
for(int u,v,i=;i<=m;++i)
{
u=read();v=read();
add(u,v,dis(u,v));
add(v,u,dis(v,u));
}
spfa_n();spfa_1();
DB ans=inf;
for(int i=;i<=n;++i)
for(int j=h[i];j;j=e[j].ne)
{
int rr=e[j].v;
DB tmp=d1[i]+e[j].c+dn[rr];
if(tmp>d1[n] && ans>tmp) ans=tmp;
}
if(ans==(DB)inf) printf("-1");
else printf("%.2lf",ans);
return ;
}
(๑′ᴗ‵๑)I Lᵒᵛᵉᵧₒᵤ❤
spfa求次短路的更多相关文章
- 基于bellman-ford算法使用队列优化的spfa求最短路O(m),最坏O(n*m)
acwing851-spfa求最短路 #include<iostream> #include<cstring> #include<algorithm> #inclu ...
- ACM - 最短路 - AcWing 851 spfa求最短路
AcWing 851 spfa求最短路 题解 以此题为例介绍一下图论中的最短路算法 \(Bellman\)-\(Ford\) 算法.算法的步骤和正确性证明参考文章最短路径(Bellman-Ford算法 ...
- SPFA求最短路——Bellman-Ford算法的优化
SPFA 算法是 Bellman-Ford算法 的队列优化算法的别称,通常用于求含负权边的单源最短路径,以及判负权环.SPFA 最坏情况下复杂度和朴素 Bellman-Ford 相同,为 O(VE), ...
- Holy Grail【spfa求最短路】
题目链接:https://www.jisuanke.com/contest/3004?view=challenges 题目大意: 1.一个无向图,给出六个顶点,添六条边,但是添边是有限制的.每次添边的 ...
- 851. spfa求最短路(spfa算法模板)
给定一个n个点m条边的有向图,图中可能存在重边和自环, 边权可能为负数. 请你求出1号点到n号点的最短距离,如果无法从1号点走到n号点,则输出impossible. 数据保证不存在负权回路. 输入格式 ...
- 851. spfa求最短路
给定一个n个点m条边的有向图,图中可能存在重边和自环, 边权可能为负数. 请你求出1号点到n号点的最短距离,如果无法从1号点走到n号点,则输出impossible. 数据保证不存在负权回路. 输入格式 ...
- poj2387 spfa求最短路
//Accepted 4688 KB 63 ms #include <cstdio> #include <cstring> #include <iostream> ...
- poj3268 Silver Cow Party (SPFA求最短路)
其实还是从一个x点出发到所有点的最短路问题.来和回只需分别处理一下逆图和原图,两次SPFA就行了. #include<iostream> #include<cstdio> #i ...
- acwing 851. spfa求最短路 模板
地址 https://www.acwing.com/problem/content/description/853/ 给定一个n个点m条边的有向图,图中可能存在重边和自环, 边权可能为负数. 请你求出 ...
随机推荐
- Android studio 不能创建Activity等文件
这是我之前安装Android studio的一系列问题:http://tieba.baidu.com/p/5921373177 1. 不能创建Activity等许多文件: 2. 工程运行不了: 3. ...
- requests模块(请求接口)
下面分别是get,post,入参json,添加cookie,添加header,上传/下载文件 的接口请求举例: import requests #导入模块 #1.发get请求 url = 'htt ...
- day18 时间:time:,日历:calendar,可以运算的时间:datatime,系统:sys, 操作系统:os,系统路径操作:os.path,跨文件夹移动文件,递归删除的思路,递归遍历打印目标路径中所有的txt文件,项目开发周期
复习 ''' 1.跨文件夹导包 - 不用考虑包的情况下直接导入文件夹(包)下的具体模块 2.__name__: py自执行 '__main__' | py被导入执行 '模块名' 3.包:一系列模块的集 ...
- 如何解决IIS配置HTTPS证书后刷新消失问题
IIS配置CER证书后完成证书申请后刷新后就会消失的这个BUG微软一直存在,因为我们一般申请都是下来的CER文件和私钥 但是IIS只支持PFX文件的导入,所以我们需要把CER文件和证书私钥转换成PFX ...
- web 前端2 html css一些小问题技巧
html css一些小问题技巧 1 对于儿子块float后,父亲块如果没内容就不见了,如何让父亲块依然跟随飘起了的儿子块撑起来呢?? 用到的属性after方法 公共方法作为继承即可. 1.1 方法 ...
- CDH平台搭建解决离线安装依赖包的方法
背景介绍: 1CDH开发平台在搭建的过程中,会遇到各种各样的问题,其中的各种依赖就是一个很让人头痛的问题.如果安装脚本文件出现了这种问题,那么就可以把以下的这种方法加入shell中,但是不要用yum来 ...
- [Web 前端] 019 css 定位之绝对定位与相对定位
1. 关于定位 我们可以使用 css 的 position 属性来设置元素的定位类型 postion 的设置项如下 设置项 释义 relative 生成相对定位元素元素所占据的文档流的位置不变元素本身 ...
- JAVA总结--正则表达式
正则表达式定义: pattern 对象是一个正则表达式的编译表示.Matcher 对象是对输入字符串进行解释和匹配操作的引擎.PatternSyntaxException 是一个非强制异常类,它表示一 ...
- JAVA Error:The project was not built since its build path is incomplete. Cannot find the class file for java.util.Map$Entry.....
今天,学习Netty框架时遇到error:Description Resource Path Location Type:The project was not built since its bui ...
- String hashCode 这个数字,很多人不知道!
作者:coolblog segmentfault.com/a/1190000010799123 1. 背景 某天,我在写代码的时候,无意中点开了 String hashCode 方法.然后大致看了一下 ...