重温spark基本原理
(一)spark特点:
1、高效,采用内存存储中间计算结果,并通过并行计算DAG图的优化,减少了不同任务之间的依赖,降低了延迟等待时间。
2、易用,采用函数式编程风格,提供了超过80种不同的Transformation和Action算子,如map,reduce,filter,groupByKey,sortByKey,foreach等。
3、通用,提供批处理、交互式查询(Spark SQL)、实时流处理(Spark Streaming)、机器学习(Spark MLlib)和图计算(GraphX)。
4、兼容,能够与很多开源组件兼容使用。
(二)基本概念:
- RDD:是弹性分布式数据集(Resilient Distributed Dataset)的简称,是分布式内存的一个抽象概念,提供了一种高度受限的共享内存模型。
- DAG:是Directed Acyclic Graph(有向无环图)的简称,反映RDD之间的依赖关系。
- Driver Program:控制程序,负责为Application构建DAG图。
- Cluster Manager:集群资源管理中心,负责分配计算资源。
- Worker Node:工作节点,负责完成具体计算。
- Executor:是运行在工作节点(Worker Node)上的一个进程,负责运行Task,并为应用程序存储数据。
- Application:用户编写的Spark应用程序,一个Application包含多个Job。
- Job:作业,一个Job包含多个RDD及作用于相应RDD上的各种操作。
- Stage:阶段,是作业的基本调度单位,一个作业会分为多组任务,每组任务被称为“阶段”。
- Task:任务,运行在Executor上的工作单元,是Executor中的一个线程。
- 总结:Application由多个Job组成,Job由多个Stage组成,Stage由多个Task组成。Stage是作业调度的基本单位。
(三)部署模式:
- Local:本地运行模式,非分布式。
- Standalone:使用Spark自带集群管理器,部署后只能运行Spark任务。
- Yarn:Haoop集群管理器,部署后可以同时运行MapReduce,Spark,Storm,Hbase等各种任务。
- Mesos:与Yarn最大的不同是Mesos 的资源分配是二次的,Mesos负责分配一次,计算框架可以选择接受或者拒绝。
(四)RDD数据结构:
RDD全称Resilient Distributed Dataset,弹性分布式数据集,它是记录的只读分区集合,是Spark的基本数据结构。
RDD代表一个不可变、可分区、里面的元素可并行计算的集合。
一般有两种方式可以创建RDD,第一种是读取文件中的数据生成RDD,第二种则是通过将内存中的对象并行化得到RDD。
RDD的操作有两种类型:即Transformation操作和Action操作。
转换操作是从已经存在的RDD创建一个新的RDD,而行动操作是在RDD上进行计算后返回结果到 Driver。
Transformation操作都具有 Lazy 特性,即 Spark 不会立刻进行实际的计算,只会记录执行的轨迹,只有触发Action操作的时候,它才会根据 DAG 图真正执行。
操作确定了RDD之间的依赖关系。
RDD之间的依赖关系有两种类型,即窄依赖和宽依赖。窄依赖时,父RDD的分区和子RDD的分区的关系是一对一或者多对一的关系。而宽依赖时,父RDD的分区和子RDD的分区是一对多或者多对多的关系。
宽依赖关系相关的操作一般具有shuffle过程,即通过一个Patitioner函数将父RDD中每个分区上key不同的记录分发到不同的子RDD分区。
重温spark基本原理的更多相关文章
- Spark基本原理
仅作<Spark快速大数据分析>学习笔记 定义:Spark是一个用来实现 快速 而 通用 的集群计算平台:(通用的大数据处理引擎:) 改进了原Hadoop MapReduce处理模型,体现 ...
- spark第一篇--简介,应用场景和基本原理
摘要: spark的优势:(1)图计算,迭代计算(2)交互式查询计算 spark特点:(1)分布式并行计算框架(2)内存计算,不仅数据加载到内存,中间结果也存储内存 为了满足挖掘分析与交互式实时查询的 ...
- 大数据计算新贵Spark在腾讯雅虎优酷成功应用解析
http://www.csdn.net/article/2014-06-05/2820089 摘要:MapReduce在实时查询和迭代计算上仍有较大的不足,目前,Spark由于其可伸缩.基于内存计算等 ...
- 大数据系列之并行计算引擎Spark介绍
相关博文:大数据系列之并行计算引擎Spark部署及应用 Spark: Apache Spark 是专为大规模数据处理而设计的快速通用的计算引擎. Spark是UC Berkeley AMP lab ( ...
- FusionInsight大数据开发---Spark应用开发
Spark应用开发 要求: 了解Spark基本原理 搭建Spark开发环境 开发Spark应用程序 调试运行Spark应用程序 YARN资源调度,可以和Hadoop集群无缝对接 Spark适用场景大多 ...
- Google云平台使用方法 | Hail | GWAS | 分布式回归 | LASSO
参考: Hail Hail - Tutorial windows也可以安装:Spark在Windows下的环境搭建 spark-2.2.0-bin-hadoop2.7 - Hail依赖的平台,并行处 ...
- Spark SQL概念学习系列之Spark SQL基本原理
Spark SQL基本原理 1.Spark SQL模块划分 2.Spark SQL架构--catalyst设计图 3.Spark SQL运行架构 4.Hive兼容性 1.Spark SQL模块划分 S ...
- spark第二篇--基本原理
==是什么 == 目标Scope(解决什么问题) 在大规模的特定数据集上的迭代运算或重复查询检索 官方定义 aMapReduce-like cluster computing framework de ...
- Spark 准备篇-基本原理
本章内容: 待整理 参考文献: <深入理解SPARK:核心思想与源码分析>(第2章) Spark的作业提交及运行流程的异同
随机推荐
- vue.js(18)--父组件向子组件传值
子组件是不能直接使用父组件中数据的,需要进行属性绑定(v-bind:自定义属性名=“msg”),绑定后需要在子组件中使用props[‘自定义属性名’]数组来定义父组件的自定义名称. props数组中的 ...
- 深入JavaScript之获取cookie以及删除cookie
cookie存在哪? 存在document.cookie中 ookie长啥样? cookie是一个字符串,长下面这样:“name=xxx; age=22;” 注意:分号后面有个空格,记住这一点,下面的 ...
- R语言抽样的问题
基本抽样函数sample sample(x,size,replace=F/T) x是数据集, size规定了从对象中抽出多少个数 replace 为F时候,表示每次抽取后的数就不能在下一次被抽取:T ...
- linux设定 runlevel 3
runlevel 查看当前系统运行级别 vi /etc/inittab //运行级别配置文件
- Codeforces 750E 线段树DP
题意:给你一个字符串,有两种操作:1:把某个位置的字符改变.2:询问l到r的子串最少需要删除多少个字符,使得这个子串含有2017子序列,并且没有2016子序列? 思路:线段树上DP,我们设状态0, 1 ...
- [POJ3694]Network(Tarjan,LCA)
[POJ3694]Network Description A network administrator manages a large network. The network consists o ...
- 2018-10-10-weekly
Algorithm 字典序排数 What 给定一个整数n,返回从1到n的字典顺序,例如,给定 n =13,返回 [1,10,11,12,13,2,3,4,5,6,7,8,9] ,尽可能的优化算法的时间 ...
- django之创建项目
1.创建虚拟环境 mkvirtualenv django_study -p python3 创建成功后:(django_study) python@ubuntu:~$ 2.安装django-指定版本1 ...
- C语言 为什么要引入指针?
https://blog.csdn.net/chengxuyuan997/article/details/81231679 正文 在说为什么引入指针这个问题前先带大家了解一下什么是指针? 指针最为简短 ...
- Page.after
解释: Page.after可以增加Page级的切面,触发的时机是在所拦截的对应生命周期方法执行之后,也可以拦截所有页面上发生的事件(对于要拦截的事件,在swan文件上必须显示绑定了相应事件). 方法 ...