问题描述

Sonya likes ice cream very much. She eats it even during programming competitions. That is why the girl decided that she wants to open her own ice cream shops.

Sonya lives in a city with n junctions and n−1 streets between them. All streets are two-way and connect two junctions. It is possible to travel from any junction to any other using one or more streets. City Hall allows opening shops only on junctions. The girl cannot open shops in the middle of streets.

Sonya has exactly k friends whom she can trust. If she opens a shop, one of her friends has to work there and not to allow anybody to eat an ice cream not paying for it. Since Sonya does not want to skip an important competition, she will not work in shops personally.

Sonya wants all her ice cream shops to form a simple path of the length r (1≤r≤k), i.e. to be located in different junctions f1,f2,…,fr and there is street between fi and fi+1 for each ii from 1 to r−1.

The girl takes care of potential buyers, so she also wants to minimize the maximum distance between the junctions to the nearest ice cream shop. The distance between two junctions aa and bb is equal to the sum of all the street lengths that you need to pass to get from the junction aa to the junction b. So Sonya wants to minimize

maxamin1≤i≤rda,fi

where a takes a value of all possible n junctions, fi — the junction where the ii-th Sonya's shop is located, and dx,y — the distance between the junctions x and y.

Sonya is not sure that she can find the optimal shops locations, that is why she is asking you to help her to open not more than k shops that will form a simple path and the maximum distance between any junction and the nearest shop would be minimal.

输入格式

The first line contains two integers n and k (1≤k≤n≤105) — the number of junctions and friends respectively.

Each of the next n−1 lines contains three integers ui, vi, and di (1≤ui,vi≤n, vi≠ui, 1≤d≤104) — junctions that are connected by a street and the length of this street. It is guaranteed that each pair of junctions is connected by at most one street. It is guaranteed that you can get from any junctions to any other.

输出格式

Print one number — the minimal possible maximum distance that you need to pass to get from any junction to the nearest ice cream shop. Sonya's shops must form a simple path and the number of shops must be at most k.

样例输入

6 2

1 2 3

2 3 4

4 5 2

4 6 3

2 4 6

样例输出

4

解析

首先,满足要求的一条链一定在树的直径上。那么,设len为直径的长度,\(dis1[i]\)表示直径上的点i到直径左个端点的距离,\(dis2[i]\)表示直径上点i不经过直径上的点能到达的最远的点。将直径视为一个序列,并重新由左端点从1开始标号,那么,设直径有m个点,答案即为

\[Max_{i=1}^{m-k+1}(dis1[i],len-dis1[i+k-1],max(dis2[i],dis2[i+1],...,dis2[i+k-1]))
\]

前面两个值可以直接计算得到,后面的那个max可以转化为滑动窗口问题,用单调队列解决即可。

代码

#include <iostream>
#include <cstdio>
#define N 100002
using namespace std;
int head[N],ver[N*2],nxt[N*2],edge[N*2],l;
int n,k,i,j,d[N],dis[N],d1[N],d2[N],fa[N],len,cnt,a,b,tmp,maxx,q[N],h,t;
bool vis[N];
int read()
{
char c=getchar();
int w=0;
while(c<'0'||c>'9') c=getchar();
while(c<='9'&&c>='0'){
w=w*10+c-'0';
c=getchar();
}
return w;
}
void insert(int x,int y,int z)
{
l++;
ver[l]=y;
edge[l]=z;
nxt[l]=head[x];
head[x]=l;
}
void dfs(int x,int pre)
{
fa[x]=pre;
for(int i=head[x];i;i=nxt[i]){
int y=ver[i];
if(y!=pre&&!vis[y]){
dis[y]=dis[x]+edge[i];
if(dis[y]>maxx) maxx=dis[y],tmp=y;
dfs(y,x);
}
}
}
int main()
{
n=read();k=read();
for(i=1;i<n;i++){
int u=read(),v=read(),w=read();
insert(u,v,w);
insert(v,u,w);
}
dfs(1,0);
maxx=0;dis[tmp]=0;
dfs(tmp,0);
len=maxx;
while(tmp!=0){
cnt++;
d[cnt]=tmp;
d1[cnt]=len-dis[tmp];
vis[tmp]=1;
tmp=fa[tmp];
}
for(i=1;i<=cnt;i++){
maxx=0;dis[d[i]]=0;
dfs(d[i],0);
d2[i]=maxx;
}
int ans=1<<30;
for(i=1,j=1;i<=cnt;i++){
while(h<=t&&q[h]<i) h++;
while(j<=min(i+k-1,cnt)){
while(h<=t&&d2[q[t]]<=d2[j]) t--;
q[++t]=j;
j++;
}
ans=min(ans,max(max(d1[i],len-d1[min(i+k-1,cnt)]),d2[q[h]]));
}
if(ans==1<<30) puts("0");
else printf("%d\n",ans);
return 0;
}

[CF1004E] Sonya and Ice-cream的更多相关文章

  1. E. Sonya and Ice Cream(开拓思维)

    E. Sonya and Ice Cream time limit per test 2 seconds memory limit per test 256 megabytes input stand ...

  2. 「CF1004E」Sonya and Ice Cream

    题目描述 给定一个 \(N\) 个点的树,要选出一条所含点的个数不超过 \(K\) 的一条路径,使得路径外的点到这条路径的距离的最大值最小. 数据范围:\(1\le K \le N \le 10^5\ ...

  3. Sonya and Ice Cream CodeForces - 1004E 树的直径, 贪心

    题目链接 set维护最小值贪心, 刚开始用树的直径+单调队列没调出来... #include <iostream>#include <cstdio> #include < ...

  4. CodeForces - 1004E Sonya and Ice Cream

    题面在这里! 挺智障的一个二分...我还写了好久QWQ,退役算啦 题解见注释... /* 先对每个点记录 向子树外的最长路 和 向子树内最长路,然后二分. 二分的时候枚举链的LCA直接做就好啦. */ ...

  5. Codeforces #495 Div2 problem E. Sonya and Ice Cream(1004E)

    网上的大多是用树的直径做的,但是一些比较巧妙的做法,来自https://www.cnblogs.com/qldabiaoge/p/9315722.html. 首先用set数组维护每一个节点所连接的边的 ...

  6. HackerRank Ice Cream Parlor

    传送门 Ice Cream Parlor Authored by dheeraj on Mar 21 2013 Problem Statement Sunny and Johnny together ...

  7. How to Implement Bluetooth Low Energy (BLE) in Ice Cream Sandwich

    ShareThis - By Vikas Verma Bluetooth low energy (BLE) is a feature of Bluetooth 4.0 wireless radio t ...

  8. Codeforces Round #359 (Div. 2) A. Free Ice Cream 水题

    A. Free Ice Cream 题目连接: http://www.codeforces.com/contest/686/problem/A Description After their adve ...

  9. Ice Cream Tower

    2017-08-18 21:53:38 writer:pprp 题意如下: Problem D. Ice Cream Tower Input file: Standard Input Output f ...

随机推荐

  1. OpenStack 实现技术分解 (6) 通用库 — oslo_log

    目录 目录 前文列表 扩展阅读 日志级别 oslolog 初始化设置 DEMO oslolog 的相关配置项 oslolog 的日志级别 oslolog 的使用技巧 推荐使用 LOGdebug 的地方 ...

  2. oracle-只读数据文件的备份与恢复

    11 只读数据文件的备份与恢复 只读数据文件是只读表空间的数据文件,数据块包括文件头在内部允许更改 SQL> alter tablespace yhqt read only; SQL> a ...

  3. Alert弹出框处理

    selenium的API提供了Alert类对alert弹出框的处理的方法,涉及到的方法有text,dismiss(),accept()和send_keys(),在javascript中主要有alert ...

  4. 添加linux中svn的用户和密码

    1:首先找到svn路径 find / -iname "svn" 一般找到svn路径之后就可以找到配置文件位置啦 svn/svnrepos/jgcp/conf 2:进入目录之后修改a ...

  5. tensorflow2.0 numpy.ndarray 与tenor直接互转

    1.代码参考 import numpy as npimport tensorflow as tf a = np.random.random((5,3)) b = np.random.randint(0 ...

  6. offsetof与container_of宏分析

    offsetof宏:结构体成员相对结构体的偏移位置 container_of:根据结构体成员的地址来获取结构体的地址 offsetof 宏 原型: #define offsetof(TYPE, MEM ...

  7. 第三章 四大组件之Activity(一)生命周期

    1.生命周期: onCreate()->onStart()->onResume()->onPause()->onStop()->onDestroy() 2.各种状况下Ac ...

  8. 第9周总结&实验报告7

    完成火车站售票程序的模拟. 要求:(1)总票数1000张:(2)10个窗口同时开始卖票:(3)卖票过程延时1秒钟:(4)不能出现一票多卖或卖出负数号票的情况.一:实验代码 package first; ...

  9. python面试题--初级(一)

    一. Python 中有多少种运算符? 这类面试问题可以判断你的 Python 功底,可以举一些实例来回答这类问题. 在 Python 中我们有 7 中运算符: 算术运算符.关系 (比较) 运算符.赋 ...

  10. 【转】sql server数据收集和监控

    转自:https://www.cnblogs.com/zhijianliutang/p/4476403.html 相关系列: https://www.cnblogs.com/zhijianliutan ...