[再寄小读者之数学篇](2014-05-27 矩阵的迹与 Jacobian)
(from MathFlow) 设 $A=(a_{ij})$, 且定义 $$\bex \n_A f(A)=\sex{\cfrac{\p f}{\p a_{ij}}}. \eex$$ 试证: (1) $\n_A\tr (AB)=B^t$; (2) $\n_A \tr(ABA^tC)=CAB+C^tAB^t$.
证明: (1) $$\beex \bea \n_A\tr (AB) &=\sex{\cfrac{\p }{\p a_{ij}}\sum_{m,n}a_{mn}b_{nm}}\\ &=\sex{\sum_{m,n} \delta_{mi}\delta_{nj}b_{nm}}\\ &=\sex{b_{ji}}\\ &=B^t. \eea \eeex$$ (2) $$\beex \bea \n_A\tr (ABA^tC) &=\sex{\cfrac{\p }{\p a_{ij}} \sum_{m,n,p,q} a_{mn}b_{np}a_{qp}c_{qm} }\\ &=\sex{ \sum_{m,n,p,q} \delta_{mi}\delta_{nj}b_{np}a_{qp}c_{qm} +\sum_{m,n,p,q} a_{mn}b_{np}\delta_{qi}\delta_{pj}c_{qm} }\\ &=\sex{ \sum_{p,q} b_{jp}a_{qp}c_{qi} +\sum_{m,n} a_{mn}b_{nj}c_{im} }\\ &=\sex{ \sum_{p,q} c_{qi}a_{qp}b_{jp} +\sum_{m,n} c_{im}a_{mn}b_{nj} }\\ &=C^tAB^t+CAB. \eea \eeex$$
[再寄小读者之数学篇](2014-05-27 矩阵的迹与 Jacobian)的更多相关文章
- [再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合)
(2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合) 设 ${\bf A},{\bf B}$ 都是反对称矩阵, 且 ${\b ...
- [再寄小读者之数学篇](2014-06-22 求导数 [中国科学技术大学2014年高等数学B考研试题])
设 $f(x)=x^2\ln(x+1)$, 求 $f^{(n)}(0)$. 解答: 利用 Leibniz 公式易知 $f'(0)=f''(0)=0$, $f^{(n)}(0)=(-1)^{n-3} n ...
- [再寄小读者之数学篇](2014-06-26 Logarithmical Sobolev inequality using BMO space)
$$\bex q>3\ra \sen{\n f}_{L^\infty} \leq C(q)\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2}\sex{e+\sen{ ...
- [再寄小读者之数学篇](2014-06-26 Besov space estimates)
(1) $$\bex \sen{D^k f}_{\dot B^s_{p,q}}\sim \sen{f}_{\dot B^{s+k}_{p,q}}. \eex$$ (2) $$\beex \bea &a ...
- [再寄小读者之数学篇](2014-06-23 Bernstein's inequality)
$$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq ...
- [再寄小读者之数学篇](2014-06-21 Beal-Kaot-Majda type logarithmic Sobolev inequality)
For $f\in H^s(\bbR^3)$ with $s>\cfrac{3}{2}$, we have $$\bex \sen{f}_{L^\infty}\leq C\sex{1+\sen{ ...
- [再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)
设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac ...
- [再寄小读者之数学篇](2014-04-08 from 1297503521@qq.com $\sin x-x\cos x=0$ 的根的估计)
(2014-04-08 from 1297503521@qq.com) 设方程 $\sin x-x\cos x=0$ 在 $(0,+\infty)$ 中的第 $n$ 个解为 $x_n$. 证明: $$ ...
- [再寄小读者之数学篇](2014-12-04 $\left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0.$)
试证: $$\bex \left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0. \eex$$ 证明 (from Hanssch ...
- [再寄小读者之数学篇](2014-11-26 广义 Schur 分解定理)
设 $A,B\in \bbR^{n\times n}$ 的特征值都是实数, 则存在正交阵 $P,Q$ 使得 $PAQ$, $PBQ$ 为上三角阵.
随机推荐
- Python中的一些小技巧
1.Boolean值可以当做一个数值 a = [5,6,7,8,9] print(a[True]) #prints 6 print(a[False]) #prints 5 2.两种方法实现 a = 1 ...
- [经验总结] 从其它sheet页引用数据生成图表时没有图例的解决办法
1.先给出一个在有数据区域的sheet页中生成的图表,比较全,图表和图例全部都有,如下图: 2.但是如果在其它 sheet页中引用该有数据的sheet数据时并生成图表,生成的图表只有图表区域显示,图例 ...
- There Are Now 3 Apache Spark APIs. Here’s How to Choose the Right One
See Apache Spark 2.0 API Improvements: RDD, DataFrame, DataSet and SQL here. Apache Spark is evolvin ...
- 大数据处理框架之Strom:Flume+Kafka+Storm整合
环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk1.8 storm-0.9 apache-flume-1.6.0 ...
- 21 python 初学(json pickle shelve)
json: # _author: lily # _date: 2019/1/19 import json my_dict = {'name': 'lily', 'age': 18} f = open( ...
- python3 今日大纲 day05
1. 上周内容回顾 1. 闭包: 内层函数对外层函数变量的使用 def outer(): a = 10 def inner(): print(a) return inner ret = outer() ...
- FileMode文件模式(转载)
FileMode指定操作系统打开文件的方式. Append 6 若存在文件,则打开该文件并查找到文件尾,或者创建一个新文件. 这需要 Append 权限. FileMode.Append 只能与 Fi ...
- python json库序列化支持中文
import json d = {"name":"英雄无敌7"} res = json.dumps(d) # 打印res 会显示 {"name&quo ...
- docker私有镜像仓库搭建
环境:centos7,dockere版本:18.09.0,镜像仓库:v2 docker-registry:192.168.137.101 docker私有仓库服务器 docker-app: 192 ...
- RocksDB系列二十二:RocksDB使用场景和特性