[再寄小读者之数学篇](2014-05-27 矩阵的迹与 Jacobian)
(from MathFlow) 设 $A=(a_{ij})$, 且定义 $$\bex \n_A f(A)=\sex{\cfrac{\p f}{\p a_{ij}}}. \eex$$ 试证: (1) $\n_A\tr (AB)=B^t$; (2) $\n_A \tr(ABA^tC)=CAB+C^tAB^t$.
证明: (1) $$\beex \bea \n_A\tr (AB) &=\sex{\cfrac{\p }{\p a_{ij}}\sum_{m,n}a_{mn}b_{nm}}\\ &=\sex{\sum_{m,n} \delta_{mi}\delta_{nj}b_{nm}}\\ &=\sex{b_{ji}}\\ &=B^t. \eea \eeex$$ (2) $$\beex \bea \n_A\tr (ABA^tC) &=\sex{\cfrac{\p }{\p a_{ij}} \sum_{m,n,p,q} a_{mn}b_{np}a_{qp}c_{qm} }\\ &=\sex{ \sum_{m,n,p,q} \delta_{mi}\delta_{nj}b_{np}a_{qp}c_{qm} +\sum_{m,n,p,q} a_{mn}b_{np}\delta_{qi}\delta_{pj}c_{qm} }\\ &=\sex{ \sum_{p,q} b_{jp}a_{qp}c_{qi} +\sum_{m,n} a_{mn}b_{nj}c_{im} }\\ &=\sex{ \sum_{p,q} c_{qi}a_{qp}b_{jp} +\sum_{m,n} c_{im}a_{mn}b_{nj} }\\ &=C^tAB^t+CAB. \eea \eeex$$
[再寄小读者之数学篇](2014-05-27 矩阵的迹与 Jacobian)的更多相关文章
- [再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合)
(2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合) 设 ${\bf A},{\bf B}$ 都是反对称矩阵, 且 ${\b ...
- [再寄小读者之数学篇](2014-06-22 求导数 [中国科学技术大学2014年高等数学B考研试题])
设 $f(x)=x^2\ln(x+1)$, 求 $f^{(n)}(0)$. 解答: 利用 Leibniz 公式易知 $f'(0)=f''(0)=0$, $f^{(n)}(0)=(-1)^{n-3} n ...
- [再寄小读者之数学篇](2014-06-26 Logarithmical Sobolev inequality using BMO space)
$$\bex q>3\ra \sen{\n f}_{L^\infty} \leq C(q)\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2}\sex{e+\sen{ ...
- [再寄小读者之数学篇](2014-06-26 Besov space estimates)
(1) $$\bex \sen{D^k f}_{\dot B^s_{p,q}}\sim \sen{f}_{\dot B^{s+k}_{p,q}}. \eex$$ (2) $$\beex \bea &a ...
- [再寄小读者之数学篇](2014-06-23 Bernstein's inequality)
$$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq ...
- [再寄小读者之数学篇](2014-06-21 Beal-Kaot-Majda type logarithmic Sobolev inequality)
For $f\in H^s(\bbR^3)$ with $s>\cfrac{3}{2}$, we have $$\bex \sen{f}_{L^\infty}\leq C\sex{1+\sen{ ...
- [再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)
设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac ...
- [再寄小读者之数学篇](2014-04-08 from 1297503521@qq.com $\sin x-x\cos x=0$ 的根的估计)
(2014-04-08 from 1297503521@qq.com) 设方程 $\sin x-x\cos x=0$ 在 $(0,+\infty)$ 中的第 $n$ 个解为 $x_n$. 证明: $$ ...
- [再寄小读者之数学篇](2014-12-04 $\left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0.$)
试证: $$\bex \left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0. \eex$$ 证明 (from Hanssch ...
- [再寄小读者之数学篇](2014-11-26 广义 Schur 分解定理)
设 $A,B\in \bbR^{n\times n}$ 的特征值都是实数, 则存在正交阵 $P,Q$ 使得 $PAQ$, $PBQ$ 为上三角阵.
随机推荐
- JMeter测试工具的使用
Jmeter下载地址: http://jmeter.apache.org/download_jmeter.cgi 解压Jmeter压缩包,双击jmeter.bat 右击测试计划 右击线程组 右击HTT ...
- Redis管道和发布订阅
管道:原子性执行命令 ''' redis-py默认在执行每次请求都会创建(连接池申请连接)和断开(归还连接池)一次连接操作, 如果想要在一次请求中指定多个命令,则可以使用pipline实现一次请求指定 ...
- 应用 memcached 提升站点性能
减少读自数据库和数据源 开源 memcached 工具是一个用来存储常用信息的缓存,有了它,您便无需从缓慢的资源,比如磁盘或数据库,加载(并处理)信息了.该工具可部署在专用的情况下,也可作为用完现有环 ...
- 【题解】P1119 灾后重建
题目地址 理解Floyed的本质 Floyed的本质是动态规划. 在地K次循环中,Floyed算法枚举任意点对(X,Y),在这之前,K从未做过任何点对的中点.因此,可以利用K为中转的路径长度更新. 在 ...
- LOJ2831 JOISC2018 道路建设 LCT、树状数组
传送门 题目的操作大概是:求某个点到根的链的逆序对,然后对这条链做区间赋值 求某个点到根的链,就是LCT中的access操作,所以我们每一次把access过后的链打上标记,就可以做到区间赋值了. 计算 ...
- String Successor zoj 3490
链接 [https://vjudge.net/contest/294259#problem/D] 题意 就是给你一个字符串,要进行n次操作 让你输出每次的字符串 操作规则: 1.如果有数字或者字母就忽 ...
- linux下安装PHP扩展memcache
公司的服务器 CentOS 7.5,PHP 5.6 下面都是最新的版本(支持到PHP5.6) 如需php7 下支持memcache扩展,请移步 https://www.cnblogs.com/h ...
- js计算两个日期的月份差?
//两个日期 var date1 = '2013-03-26'; var date2 = '2011-01-10'; // 拆分年月日 date1 = date1.split('-'); // 得到月 ...
- 面试题(一续Spring)
9.Spring体系结构和jar用途 参考https://blog.csdn.net/sunchen2012/article/details/53939253 spring官网给出了一张spring3 ...
- java 中的基本数据类型
1, 变量 Java是强类型语言, 对于每一种数据都定义了类型,基本数据类型分为数值型,字符型,布尔型.数值型又分为了整型和浮点型. 整型又分为byte, int, short long. 浮点型又 ...