GMA Round 1 数列与方程
数列与方程
首项为1,各项均大于0的数列{$a_n$}的前n项和$S_n$满足对于任意正整数n:$S_{n+1}^2-2*S_{n+1}*S_{n}-\sqrt{2}*S_n-1=0$,求$a_{30}$的值,保留3位小数。
由$S_{n+1}^2-2S_{n+1}S_{n}-\sqrt{2}S_n-1=0$,$S_{n+1}=a_{n+1}+S_n$可得$a_{n+1}^2=S_n^2+\sqrt{2}S_n+1=S_n^2+1-2*S_n*cos\frac{3\pi}{4}$。
因此,可以构成边长为$a_{n+1}$,$S_n$,1的三角形,$S_n$与1的夹角为$\frac{3\pi}{4}$。得$\frac{a_{n+1}}{sin\frac{3\pi}{4}}=\frac{1}{sin\theta}$,当斜边为$a_{n+1}$时,$\theta=(\frac{1}{2})^{n-1}*\frac{\pi}{2^{n+2}}$。于是$a_n=\frac{\sqrt{2}}{2*sin\frac{\pi}{2^{n+1}}}$
定位:中等偏困难题
GMA Round 1 数列与方程的更多相关文章
- GMA Round 1 数列求和(Hard)
传送门 数列求和(Hard) 在数列{$a_n$}中,$a_1=-\frac{1}{4}$,$\frac{1}{a_{n+1}}+\frac{1}{a_n}=\begin{cases}-3(n为偶数) ...
- GMA Round 1 数列求单项
传送门 数列求单项 在数列{$a_n$}中,$a_1=-\frac{1}{4}$,$\frac{1}{a_{n+1}}+\frac{1}{a_n}=\begin{cases}-3(n为偶数)\\3(n ...
- GMA Round 1
学弟说我好久没更blog了. 因为自己最近其实没干什么. 所以来搬运一下GMA Round 1 的比赛内容吧,blog访问量.网站流量一举两得. 链接:https://enceladus.cf/con ...
- GMA Round 1 奇怪的数列
传送门 奇怪的数列 已知数列{$a_n$},$a_1=1$,$a_{n+1}=a_n+\frac{1}{a_n}$,现在需要你估计$a_{233333}$的值,求出它的整数部分即可. 将原等式两边平方 ...
- GMA Round 1 最短距离
传送门 最短距离 在椭圆C:$\frac{x^2}{20^2}+\frac{y^2}{18^2}=1$上作两条相互垂直的切线,切线交点为P,求P到椭圆C的最短距离.结果保留6位小数. 设椭圆方程:$\ ...
- GMA Round 1 极坐标的愤怒
传送门 极坐标的愤怒 我也想被积分啊!可是为什么你们从来不知道我的心意!——极坐标 愤怒会夺走理智,哪怕是被迫的也好,请为极坐标方程$r=t$(也写作$ρ=θ$)积分吧. 为了考验你的忠诚,你需要回答 ...
- GMA Round 1 极坐标的忧伤
传送门 极坐标的忧伤 为什么你们不喜欢为我求导……——极坐标 极坐标的心意,想必已经传达到了,那么请为极坐标方程$r=t$(也写作$ρ=θ$)求导吧. 为了考验你的忠诚,你需要回答$r=t$在(0,$ ...
- [美团 CodeM 初赛 Round A]数列互质
题目大意: 给出一个长度为n的数列a1,a2,a3,...,an,以及m组询问(li,ri,ki),求区间[li,ri]中有多少数在该区间中的出现次数与ki互质. 思路: 莫队. f[i]记录数字i出 ...
- GMA Round 1 离心率
传送门 离心率 P是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$上一点,F1.F2为椭圆左右焦点.△PF1F2内心为M,直线PM与x轴相交于点N,NF1:NF2=4:3. ...
随机推荐
- Docker:单机编排工具docker-compose [十二]
一.docker-compose的安装 1.安装 curl -o /etc/yum.repos.d/epel.repo http://mirrors.aliyun.com/repo/epel-7.re ...
- Shell脚本之grep
1. 过滤空行 grep -v ^$
- swiper常见问题
swiper是一个比较不错的一个轮播插件,但是呢,有时候在使用的时候也会出现很多的问题,我将我遇到的一些问题解决办法写在下面. 第一个问题:swiper分页器不显示 一般swiper使用分页器都是这样 ...
- ArcGIS Server 10.0 安装及使用完整攻略
引言 ArcGIS Server 10.0在使用和安装的过程中,需要进行比较全面的学习,才能正确使用.缺乏正确的指引,用户很容易在安装及使用中遇到问题.所以笔者在此总结Server 10.0的安装及使 ...
- Coursera, Big Data 2, Modeling and Management Systems (week 4/5/6)
week4 streaming data format 下面讲 data lakes schema-on-read: 从数据源读取raw data 直接放到 data lake 里,然后再读到mode ...
- IN-子查询
为什么需要子查询? 现实中,很多情况需要进行以下条件的判断 集合成员资格 某一元素是否是某一个集合的成员 集合之间的比较 某一个集合是否包含另一个集合 集合基数的测试 测试集合是否为空 测试集合是否存 ...
- python3: 简单4步骤输出九九乘法表
如何输出一个九九乘法表,使用python语言,嵌套循环,4行代码就可以实现,瞬间感觉python真的很简单~ 代码: for i in range(1,10): for j in range(1,i+ ...
- Django部署方法
Windows方案: Apache2.4 + Django2.0 网上的方法乱七八糟: 那么接下来:最好的方法,不行吃屎. 当前环境是Django2.0+ python35(64bit) 部署原因: ...
- Lua 中 pairs 和 ipairs 的区别
ipairs (t) Returns three values: an iterator function, the table t, and 0, so that the construction ...
- 【easy】112.path sum 113.-----------------
求是否有从根到叶的路径,节点和等于某个值. /** * Definition for a binary tree node. * struct TreeNode { * int val; * Tree ...