题目链接:https://vjudge.net/problem/HDU-1542

There are several ancient Greek texts that contain descriptions of the fabled island Atlantis. Some of these texts even include maps of parts of the island. But unfortunately, these maps describe different regions of Atlantis. Your friend Bill has to know the total area for which maps exist. You (unwisely) volunteered to write a program that calculates this quantity. 

InputThe input file consists of several test cases. Each test case starts with a line containing a single integer n (1<=n<=100) of available maps. The n following lines describe one map each. Each of these lines contains four numbers x1;y1;x2;y2 (0<=x1<x2<=100000;0<=y1<y2<=100000), not necessarily integers. The values (x1; y1) and (x2;y2) are the coordinates of the top-left resp. bottom-right corner of the mapped area.

The input file is terminated by a line containing a single 0. Don’t process it.OutputFor each test case, your program should output one section. The first line of each section must be “Test case #k”, where k is the number of the test case (starting with 1). The second one must be “Total explored area: a”, where a is the total explored area (i.e. the area of the union of all rectangles in this test case), printed exact to two digits to the right of the decimal point.

Output a blank line after each test case. 
Sample Input

2
10 10 20 20
15 15 25 25.5
0

Sample Output

Test case #1
Total explored area: 180.00

代码如下:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const double EPS = 1e-;
const int INF = 2e9;
const LL LNF = 2e18;
const int MAXN = 1e5+; struct line
{
double le, ri, h;
int id;
bool operator<(const line &a)const{
return h<a.h;
}
}Line[MAXN]; //X用于离散化横坐标,times为此区间被覆盖的次数,sum为此区间被覆盖的长度
double X[MAXN], times[MAXN<<], sum[MAXN<<]; void push_up(int u, int l, int r)
{
if(times[u]>) //该区间被覆盖,则覆盖长度为区间长度
sum[u] = X[r] - X[l];
else //该区间没有被覆盖,如果为单位区间,则覆盖长度为0,否则为两个子区间的覆盖长度之和。
sum[u] = (l+==r)?:sum[u*]+sum[u*+];
} //此种线段树的操作对象为连续型,即最小的元素为长度为1的区间[l,r],其中l和r只代表端点(r-l>=1),用于确定
//区间的位置和长度,l和r本身没有特别的含义。而以往做的什么单点更新之类的,都属于离散型,在l处和r处是有含义的
void add(int u, int l, int r, int x, int y, int v)
{
if(x<=l && r<=y)
{
times[u] += v;
push_up(u, l, r);
return;
} int mid = (l+r)>>;
if(x<=mid-) add(u*, l, mid, x, y, v);
if(y>=mid+) add(u*+, mid, r, x, y, v);
push_up(u, l, r);
} int main()
{
int n, kase = ;
while(scanf("%d", &n) && n)
{
for(int i = ; i<=n; i++)
{
double x1, y1, x2, y2;
scanf("%lf%lf%lf%lf", &x1, &y1, &x2, &y2);
Line[i].le = Line[i+n].le = x1;
Line[i].ri = Line[i+n].ri = x2;
Line[i].h = y1; Line[i+n].h = y2;
Line[i].id = ; Line[i+n].id = -;
X[i] = x1; X[i+n] = x2;
} sort(Line+, Line++*n);
sort(X+, X++*n);
int m = unique(X+, X++*n) - (X+); //去重 memset(sum, , sizeof(sum));
memset(times, , sizeof(times)); double ans = ;
for(int i = ; i<=*n-; i++)
{
int l = upper_bound(X+, X++m, Line[i].le) - (X+);
int r = upper_bound(X+, X++m, Line[i].ri) - (X+);
add(, , m, l, r, Line[i].id);
ans += sum[]* (Line[i+].h-Line[i].h);
}
printf("Test case #%d\n", ++kase);
printf("Total explored area: %.2f\n\n", ans);
}
}

HDU1542 Atlantis —— 求矩形面积并 线段树 + 扫描线 + 离散化的更多相关文章

  1. HDU3642 Get The Treasury —— 求矩形交体积 线段树 + 扫描线 + 离散化

    题目链接:https://vjudge.net/problem/HDU-3642 Jack knows that there is a great underground treasury in a ...

  2. hdu1542 Atlantis (线段树+扫描线+离散化)

    Atlantis Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S ...

  3. poj-1151矩形面积并-线段树

    title: poj-1151矩形面积并-线段树 date: 2018-10-30 22:35:11 tags: acm 刷题 categoties: ACM-线段树 概述 线段树问题里的另一个问题, ...

  4. POJ-1151-Atlantis(线段树+扫描线+离散化)[矩形面积并]

    题意:求矩形面积并 分析:使用线段树+扫描线...因为坐标是浮点数的,因此还需要离散化! 把矩形分成两条边,上边和下边,对横轴建树,然后从下到上扫描上去,用col表示该区间有多少个下边,sum代表该区 ...

  5. HDU1255 覆盖的面积 —— 求矩形交面积 线段树 + 扫描线 + 离散化

    题目链接:https://vjudge.net/problem/HDU-1255 给定平面上若干矩形,求出被这些矩形覆盖过至少两次的区域的面积. Input输入数据的第一行是一个正整数T(1<= ...

  6. POJ 1177 Picture(线段树 扫描线 离散化 求矩形并面积)

    题目原网址:http://poj.org/problem?id=1177 题目中文翻译: 解题思路: 总体思路: 1.沿X轴离散化建树 2.按Y值从小到大排序平行与X轴的边,然后顺序处理 如果遇到矩形 ...

  7. HDU 1542 Atlantis(线段树扫描线+离散化求面积的并)

    Atlantis Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S ...

  8. POJ1151Atlantis 矩形面积并[线段树 离散化 扫描线]

    Atlantis Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 21734   Accepted: 8179 Descrip ...

  9. POJ 1151Atlantis 矩形面积并[线段树 离散化 扫描线]

    Atlantis Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 21734   Accepted: 8179 Descrip ...

随机推荐

  1. TOJ 2944 Mussy Paper

    2944.   Mussy Paper Time Limit: 2.0 Seconds   Memory Limit: 65536K    Special JudgeTotal Runs: 381  ...

  2. UVALive 7148 LRIP

    LRIPTime Limit: 10000MS Memory Limit: Unknown 64bit IO Format: %lld & %llu 解题:树分治 参考了Oyking大神的解法 ...

  3. 七牛云赵之健:多维度融合赋能视频 AI 的实践

    6 月 30 日下午,赵之健在七牛架构师实践日第二十九期进行了<多维度融合赋能视频 AI 的实践>为题的实战分享. 
 作者简介: 
  赵之健,七牛人工智能实验室资深算法工程师, 七 ...

  4. bzoj 1251序列终结者 splay 区间翻转,最值,区间更新

    序列终结者 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 4594  Solved: 1939[Submit][Status][Discuss] De ...

  5. j_spring_security_check 404错误

    折腾了好久,还是写一篇备忘 折腾了好久,还是写一篇备忘 首先检查路径 <form class="form-signin" method="POST" ac ...

  6. TOYS(poj 2318)

    题意:就是给了m个点,落在n+1个区域中,问各个区域有多少个点. /* 对于每个玩具,二分其所在的区间,然后用叉积判断. 但是我觉得枚举好像时间复杂度也可以. */ #include<cstdi ...

  7. BZOJ1775: [Usaco2009 Dec]Vidgame 电视游戏问题

    n<=50个游戏机有花费,每个游戏机有Gi<=10种游戏,每种游戏有花费有收益,买了游戏机才能玩对应游戏,求最大收益. 这就是一个背包!不过有依存关系,就不会了! 方法一:f[i][j]表 ...

  8. Codeforces Round #295 D. Cubes [贪心 set map]

    传送门 D. Cubes time limit per test 3 seconds memory limit per test 256 megabytes input standard input ...

  9. HDU——2768 Cat vs. Dog

    Cat vs. Dog Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Tota ...

  10. 代码svn下载到本地后,关于数据库问题

    代码svn下载到本地后,关于数据库问题 1.那我本地还用搭建相应的数据库么?答案:当然不用啦,本地系统里已经配置好了数据库的网络地址了,端口号,密码啥的.即使你代码运行在本地,依然可以将数据传输到服务 ...