这道题目并不能直接使用递归,因为

7(1)

7(1)         7(1)

7(1)      7(2)         7(1)

7(1)       7(3)         7(3)          7(1)

7(1)      7(4)         7(6)        7(4)         7(1)

假设题目中的数据是这样子的,小括号内代表着每个数被递归调用的次数。

这个三角实际上是一个杨辉三角,它的和为  2^n -2  ,题目中的层数大小是100以内,那最大的话就要算到  2^100 ,

这已经不是超时的问题了,汗颜。

那怎么办呢?我们只需要将每次用到的值它的最大值存起来,等着返回的时候,让上层的递归直接使用就可以了。

这样的话复杂度就是等差数列,就是n(n-1)/2,所以这次就不用等到宇宙毁灭了。

#include <iostream>
#include <algorithm>
#define MAX 101
using namespace std;
int n,D[MAX][MAX];
int maxsum[MAX][MAX]; int MaxSum(int i,int j)
{
if (maxsum[i][j]!=-1) {
return maxsum[i][j];
}
if (i==n) {
maxsum[i][j]=D[i][j];
}
else {
int x=MaxSum(i+1,j);
int y=MaxSum(i+1,j+1);
maxsum[i][j]=max(x,y)+D[i][j];
}
return maxsum[i][j];
} int main()
{
int i,j;
cin>>n;
for (int i=1;i<=n;i++) {
for (int j=1;j<=i;j++) {
cin>>D[i][j];
maxsum[i][j]=-1;
}
}
cout<<MaxSum(1,1)<<endl;
return 0;
}

poj-1163 动态规划的更多相关文章

  1. poj 1163 The Triangle &amp;poj 3176 Cow Bowling (dp)

    id=1163">链接:poj 1163 题意:输入一个n层的三角形.第i层有i个数,求从第1层到第n层的全部路线中.权值之和最大的路线. 规定:第i层的某个数仅仅能连线走到第i+1层 ...

  2. POJ 1163 The Triangle(简单动态规划)

    http://poj.org/problem?id=1163 The Triangle Time Limit: 1000MS   Memory Limit: 10000K Total Submissi ...

  3. POJ - 1163 The Triangle 【动态规划】

    一.题目 The Triangle 二.分析 动态规划入门题. 状态转移方程$$DP[i][j] = A[i][j] + max(DP[i-1][j], DP[i][j])$$ 三.AC代码 1 #i ...

  4. POJ 1163 The Triangle【dp+杨辉三角加强版(递归)】

    The Triangle Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 49955   Accepted: 30177 De ...

  5. OpenJudge/Poj 1163 The Triangle

    1.链接地址: http://bailian.openjudge.cn/practice/1163 http://poj.org/problem?id=1163 2.题目: 总时间限制: 1000ms ...

  6. POJ 1163 The Triangle 简单DP

    看题传送门门:http://poj.org/problem?id=1163 困死了....QAQ 普通做法,从下往上,可得状态转移方程为: dp[i][j]= a[i][j] + max (dp[i+ ...

  7. nyoj 17-单调递增最长子序列 && poj 2533(动态规划,演算法)

    17-单调递增最长子序列 内存限制:64MB 时间限制:3000ms Special Judge: No accepted:21 submit:49 题目描述: 求一个字符串的最长递增子序列的长度 如 ...

  8. POJ 1163 数字三角形

    Portal:http://poj.org/problem?id=1163 DP经典题,IOI94考题,在各大OJ上都有 #include<iostream> #include<al ...

  9. poj 3034 动态规划

    思路:这是一道坑爹的动态规划,思路很容易想到,就是细节. 用dp[t][i][j],表示在第t时间,锤子停在(i,j)位置能获得的最大数量.那么只要找到一个点转移到(i,j)收益最大即可. #incl ...

  10. poj 2498 动态规划

    思路:简单动态规划 #include<map> #include<set> #include<cmath> #include<queue> #inclu ...

随机推荐

  1. POJ3258【二分】

    题意: 问一个河岸,两岸之间有笔直的n块石头,然后拔起(也可以施展魔法)m个石块,假设两岸也是石块,求处理过的石块的最小距离的最大. 思路: 他让我们求移开m个石块,无非是在n+2-m(已经把两岸看成 ...

  2. MySQL的分支

    1.MariaDB MariaDB数据库管理系统是 MySQL 的一个分支,主要由开源社区在维护,采用GPL授权许可 MariaDB的目的是完全兼容MySQL,包括API和命令行,使之能轻松成为MyS ...

  3. bzoj 4530: [Bjoi2014]大融合【LCT】

    新姿势,一般来讲LCT只能维护splay重边里的数据,而这里要求维护整颗子树的size 多维护一个sq表示当前点轻儿子的size和,si表示包括轻重边的整颗子树的大小 然后需要改sq的地方是link和 ...

  4. 关于Page翻页效果, PageViewConrtoller

    Page View Controllers你使用一个page view controller用page by page的方式来展示内容.一个page view controller管理一个self-c ...

  5. Luogu P1463 [POI2002][HAOI2007]反素数【数论/dfs】By cellur925

    题目传送门 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1 ...

  6. 18.3.2从Class上获取信息(构造器)

    获取构造器信息 package d18_3_1; import java.lang.reflect.Constructor; import java.util.Arrays; /** * 获取构造器的 ...

  7. 自己写的MD5加密原码

    package com.wh.md5; import java.security.MessageDigest; import java.util.Arrays; /** * @author 王恒 * ...

  8. debug授权码

    www.vfxcx.com 704835b5c54b56426257e0742568fe54

  9. 【转】JobScheduler

    JobScheduler JobScheduler是Android L(API21)新增的特性,用于定义满足某些条件下执行的任务.它的宗旨是把一些不是特别紧急的任务放到更合适的时机批量处理,这样可以有 ...

  10. 4. iOS测试常用方法

    1.    [XCUIElement exists]方法只能确定这个View是否存在,即使不在当前屏幕上也返回True.如果要确定View是否在屏幕可见范围内,可以判断其Frame是否在Window的 ...