这道题目并不能直接使用递归,因为

7(1)

7(1)         7(1)

7(1)      7(2)         7(1)

7(1)       7(3)         7(3)          7(1)

7(1)      7(4)         7(6)        7(4)         7(1)

假设题目中的数据是这样子的,小括号内代表着每个数被递归调用的次数。

这个三角实际上是一个杨辉三角,它的和为  2^n -2  ,题目中的层数大小是100以内,那最大的话就要算到  2^100 ,

这已经不是超时的问题了,汗颜。

那怎么办呢?我们只需要将每次用到的值它的最大值存起来,等着返回的时候,让上层的递归直接使用就可以了。

这样的话复杂度就是等差数列,就是n(n-1)/2,所以这次就不用等到宇宙毁灭了。

#include <iostream>
#include <algorithm>
#define MAX 101
using namespace std;
int n,D[MAX][MAX];
int maxsum[MAX][MAX]; int MaxSum(int i,int j)
{
if (maxsum[i][j]!=-1) {
return maxsum[i][j];
}
if (i==n) {
maxsum[i][j]=D[i][j];
}
else {
int x=MaxSum(i+1,j);
int y=MaxSum(i+1,j+1);
maxsum[i][j]=max(x,y)+D[i][j];
}
return maxsum[i][j];
} int main()
{
int i,j;
cin>>n;
for (int i=1;i<=n;i++) {
for (int j=1;j<=i;j++) {
cin>>D[i][j];
maxsum[i][j]=-1;
}
}
cout<<MaxSum(1,1)<<endl;
return 0;
}

poj-1163 动态规划的更多相关文章

  1. poj 1163 The Triangle &amp;poj 3176 Cow Bowling (dp)

    id=1163">链接:poj 1163 题意:输入一个n层的三角形.第i层有i个数,求从第1层到第n层的全部路线中.权值之和最大的路线. 规定:第i层的某个数仅仅能连线走到第i+1层 ...

  2. POJ 1163 The Triangle(简单动态规划)

    http://poj.org/problem?id=1163 The Triangle Time Limit: 1000MS   Memory Limit: 10000K Total Submissi ...

  3. POJ - 1163 The Triangle 【动态规划】

    一.题目 The Triangle 二.分析 动态规划入门题. 状态转移方程$$DP[i][j] = A[i][j] + max(DP[i-1][j], DP[i][j])$$ 三.AC代码 1 #i ...

  4. POJ 1163 The Triangle【dp+杨辉三角加强版(递归)】

    The Triangle Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 49955   Accepted: 30177 De ...

  5. OpenJudge/Poj 1163 The Triangle

    1.链接地址: http://bailian.openjudge.cn/practice/1163 http://poj.org/problem?id=1163 2.题目: 总时间限制: 1000ms ...

  6. POJ 1163 The Triangle 简单DP

    看题传送门门:http://poj.org/problem?id=1163 困死了....QAQ 普通做法,从下往上,可得状态转移方程为: dp[i][j]= a[i][j] + max (dp[i+ ...

  7. nyoj 17-单调递增最长子序列 && poj 2533(动态规划,演算法)

    17-单调递增最长子序列 内存限制:64MB 时间限制:3000ms Special Judge: No accepted:21 submit:49 题目描述: 求一个字符串的最长递增子序列的长度 如 ...

  8. POJ 1163 数字三角形

    Portal:http://poj.org/problem?id=1163 DP经典题,IOI94考题,在各大OJ上都有 #include<iostream> #include<al ...

  9. poj 3034 动态规划

    思路:这是一道坑爹的动态规划,思路很容易想到,就是细节. 用dp[t][i][j],表示在第t时间,锤子停在(i,j)位置能获得的最大数量.那么只要找到一个点转移到(i,j)收益最大即可. #incl ...

  10. poj 2498 动态规划

    思路:简单动态规划 #include<map> #include<set> #include<cmath> #include<queue> #inclu ...

随机推荐

  1. Educational Codeforces Round 21E selling souvenirs (dp)

    传送门 题意 给出n个体积为wi,价值为ci的物品,现在有一个m大的背包 问如何装使得最后背包内的物品价值最大,输出价值 分析 一般的思路是01背包,但n*v不可做 题解的思路 We can iter ...

  2. python matplotlib相关 dateutil

    dateutil:   easy_install python_dateutil pyparsing: easy_install pyparsing

  3. UVA - 10564 Paths through the Hourglass

    传送门:https://vjudge.net/problem/UVA-10564 题目大意:给你一张形如沙漏一般的图,每一个格子有一个权值,问你有多少种方案可以从第一行走到最后一行,并且输出起点最靠前 ...

  4. 用sublime text3 直接编译C/C++,java

    首先你得下载好 这是我之前安装codeblocks时留下的里面有cpp,c++,gcc,g++. 第二步就是建立环境变量 这三个配置完成就ok 了 然后进入sublime text 3中,找到工具(t ...

  5. udp聊天交互

    #****server端 import socket sk = socket.socket(type = socket.SOCK_DGRAM) sk.bind(('127.0.0.1', 8050)) ...

  6. D. The Door Problem 带权并查集

    http://codeforces.com/contest/776/problem/D 注意到每扇门都有两个东西和它连接着,那么,如果第i扇门的状态是1,也就是已经打开了,那么连接它的两个按钮的状态应 ...

  7. Suricata的性能

    不多说,直接上干货! 见官网 https://suricata.readthedocs.io/en/latest/performance/index.html Docs » 7. Performanc ...

  8. spark序列化及MapOutputTracker解析

    本文主要打算对spark内部的序列化机制以及在shuffle map中起衔接作用的MapOutputTracker做一下剖析.主要涉及具体实现原理以及宏观设计的一些思路. 1,spark序列化 任何一 ...

  9. HashMap的简单实现

    基本概念 Map 别名映射表,也叫关联数组,基本思想是它维护的键-值(对)关联,因此可以用键查找值,也有放入键值的操作,下面根据定义自己来实现一个Map,首先应该想到的是数组,因为大多数Java集合类 ...

  10. 代码审查的艺术:Dropbox 的故事

    Dropbox 的 iOS 应用中的每一行代码,都是开始于被添加到 Maniphest 中的一个 bug 或者功能任务,Maniphest 是我们的任务管理系统.当一位工程师在上面接受一个任务,那么在 ...