\(\\\)

\(Description\)


给出一个四联通的\(N\times M\) 网格图和起点。图中有一些位置是障碍物。

现在上下移动步数不限,向左至多走 \(a\) 步,向右至多走 \(b\) 步,求从起点出发能到达多少个空地。

  • \(N,M\le 2000\)

\(\\\)

\(Solution\)


爷们太神了......

开始的想法是直接跑最短路, \(dist\) 为横向移动总步数。

后来发现矛盾在于,如果到一个格子向左走的步数较少,向右走的步数较多,和这种情况反过来,无法确定那种更优,进而无法确定用那种状态更新接下来的点。

然后听爷们讲了好久听懂了正确性证明。考虑要从起点 U 到达 V 这个格子,它横向的差值为 \(2\) 是固定的。

也就是说,任何一个合法的方案向左走的步数减掉向右走的步数都应该等于 \(2\)。

那么这种矛盾不存在了。因为向左向右的步数会同时增长,否则一定不会到达这个目标点。

然后就愉快上最短路,根据\(Dij\) 的原理,循环次数就是访问的点数。

\(\\\)

\(Code\)


#include<cmath>
#include<queue>
#include<cstdio>
#include<cctype>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define N 2010
#define R register
#define gc getchar
#define inf 2000000000
using namespace std;
typedef long long ll; inline ll rd(){
ll x=0; bool f=0; char c=gc();
while(!isdigit(c)){if(c=='-')f=1;c=gc();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=gc();}
return f?-x:x;
} int n,m,lx,rx,ux,uy,ans; bool mp[N][N],vis[N][N]; struct dist{
int x,y,l,r,sum;
friend operator < (const dist &x,const dist &y){
return x.sum>y.sum;
}
}dis[N][N]; priority_queue<dist> q; int main(){
n=rd(); m=rd();
ux=rd(); uy=rd();
lx=rd(); rx=rd();
char c=gc();
for(R int i=1;i<=n;++i)
for(R int j=1;j<=m;++j){
while(c!='.'&&c!='*') c=gc();
mp[i][j]=(c=='.');
c=gc();
dis[i][j].x=i; dis[i][j].y=j;
dis[i][j].l=dis[i][j].r=dis[i][j].sum=inf;
}
dis[ux][uy].l=dis[ux][uy].r=dis[ux][uy].sum=0;
q.push(dis[ux][uy]);
while(!q.empty()){
dist x=q.top(); q.pop();
if(vis[x.x][x.y]) continue;
vis[x.x][x.y]=1; ++ans;
if(mp[x.x+1][x.y]){
if(dis[x.x+1][x.y].sum>x.sum){
dis[x.x+1][x.y].l=x.l;
dis[x.x+1][x.y].r=x.r;
dis[x.x+1][x.y].sum=x.sum;
q.push(dis[x.x+1][x.y]);
}
}
if(mp[x.x-1][x.y]){
if(dis[x.x-1][x.y].sum>x.sum){
dis[x.x-1][x.y].l=x.l;
dis[x.x-1][x.y].r=x.r;
dis[x.x-1][x.y].sum=x.sum;
q.push(dis[x.x-1][x.y]);
}
}
if(mp[x.x][x.y-1]&&x.l<lx){
if(dis[x.x][x.y-1].sum>x.sum+1){
dis[x.x][x.y-1].l=x.l+1;
dis[x.x][x.y-1].r=x.r;
dis[x.x][x.y-1].sum=x.sum+1;
q.push(dis[x.x][x.y-1]);
}
}
if(mp[x.x][x.y+1]&&x.r<rx){
if(dis[x.x][x.y+1].sum>x.sum+1){
dis[x.x][x.y+1].l=x.l;
dis[x.x][x.y+1].r=x.r+1;
dis[x.x][x.y+1].sum=x.sum+1;
q.push(dis[x.x][x.y+1]);
}
}
}
printf("%d\n",ans);
return 0;
}

[ CodeForces 1063 B ] Labyrinth的更多相关文章

  1. [Codeforces Round #516][Codeforces 1063B/1064D. Labyrinth]

    题目链接:1063B - Labyrinth/1064D - Labyrinth 题目大意:给定一个\(n\times m\)的图,有若干个点不能走,上下走无限制,向左和向右走的次数分别被限制为\(x ...

  2. Codeforces 1064 D - Labyrinth

    D - Labyrinth 对于位置(i,j), j - c = R - L = const(常数), 其中R表示往右走了几步,L表示往左走了几步 所以R越大, L就越大, R越小, L就越小, 所以 ...

  3. CodeForces 616C The Labyrinth

    先预处理出所有连通块,对于每一个*,看他四周的连通块即可 #include<cstdio> #include<cstring> #include<queue> #i ...

  4. Codeforces 1064D/1063B Labyrinth

    原题链接/原题链接(代理站) 题目翻译 给你一个\(n*m\)的迷宫和起始点,有障碍的地方不能走,同时最多向左走\(x\)次,向右走\(y\)次,向上向下没有限制,问你有多少个格子是可以到达的. 输入 ...

  5. [ CodeForces 1063 A ] Oh Those Palindromes

    \(\\\) \(Description\) 给出 \(N\) 个小写字母,将他们排成一个字符串,使得这个字符串里包含的回文串最多. \(N\le 10^5\) \(\\\) \(Solution\) ...

  6. 【Codeforces 1063B】Labyrinth

    [链接] 我是链接,点我呀:) [题意] 你可以往左最多x次,往右最多y次 问你从x,y出发最多能到达多少个格子 只能往上下左右四个方向走到没有障碍的格子 [题解] 假设我们从(r,c)出发想要到固定 ...

  7. Codeforces Educational Codeforces Round 5 C. The Labyrinth 带权并查集

    C. The Labyrinth 题目连接: http://www.codeforces.com/contest/616/problem/C Description You are given a r ...

  8. Codeforces Round #354 (Div. 2) D. Theseus and labyrinth bfs

    D. Theseus and labyrinth 题目连接: http://www.codeforces.com/contest/676/problem/D Description Theseus h ...

  9. Codeforces Round #516 (Div. 2)D. Labyrinth

    D. Labyrinth 题目链接:https://codeforces.com/contest/1064/problem/D 题意: 给出一个n*m的矩阵以及人物的起点,并且给出x,y,分别代表这个 ...

随机推荐

  1. Java导出jar并运行

    1. 创建manifest.mf文件 在工程下创建manifest.mf文件.文件内容为: Manifest-version: 1.0 Main-Class: SqlCheckUtil.java 注意 ...

  2. 关于Java函数不支持参数默认值的讨论,最后一条亮了 2333

  3. ppc_85xx-gcc -shared -fPIC liberr.c -o liberr.so

    fPIC作用于编译阶段,告诉编译器产生与位置无关代码(Position-Independent Code),   则产生的代码中,没有绝对地址,所有使用相对地址.故而代码能够被载入器载入到内存的随意 ...

  4. springmvc 中model中放入枚举类型

    我们直接看样例: Map<String, String> mallMap = new HashMap<String, String>(); mallMap.put(MallSt ...

  5. 戴尔iDRAC服务器远程控制设置

    对于远程的服务器,我们不能经常性的去机房维护,所以远程控制对于服务器来说就显得至关重要.那么你是用什么方式对服务器进行远程控制呢?远程桌面?还是KVM切换器?NO,你OUT了!如果你用的是戴尔的服务器 ...

  6. Kinect驱动的人脸实时动画

    近期几年.realtime的人脸动画開始风声水起.不少图形图像的研究者開始在这个领域不断的在顶级会议siggraph和期刊tog上面发文章. 随着kinect等便宜的三维数据採集设备的运用.以及其功能 ...

  7. HDU 5402 Travelling Salesman Problem (构造)(好题)

    大致题意:n*m的非负数矩阵,从(1,1) 仅仅能向四面走,一直走到(n,m)为终点.路径的权就是数的和.输出一条权值最大的路径方案 思路:因为这是非负数,要是有负数就是神题了,要是n,m中有一个是奇 ...

  8. B. Error Correct System (CF Round #296 (Div. 2))

    B. Error Correct System time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  9. WebSphere报错指南

    看了下面的文章,泥坑会叫我标题党,没错我就是啊. 1.was日志路径 ${WebSphere根路径}/AppServer/profiles/AppSrv01/logs/,比如说我的路径就是/opt/I ...

  10. 解决burp suite 使用chrome訪问https失真的问题

    用burp suite 訪问https网页 尤其使用chrome(有时候firefox也会) 会出现js或者css载入不出来的情况 这样的时候,导出burp suite的证书,保存为cer格式 然后进 ...