相关:

https://colab.research.google.com/github/google/brax/blob/main/notebooks/training_torch.ipynb

之前写过一篇同主题的文章,后来发现这个文章中有一些问题,不过也有些不好改动,于是就新开一篇来进行更正和补充!!!

之前版本:

https://www.cnblogs.com/xyz/p/18564777

之所以之前版本有一些问题,其主要原因是其中的很多推理都是使用ChatGPT完成的,后来又遇到其他关于log_det_jacobian的算法,于是就重新遇到了相关问题,这时候通过查看相关资料发现ChatGPT的生成的理论推理有一些问题,但是出现的问题又十分不好察觉,于是就有了本篇。

要想知道log_det_jacobian是个什么东西,首先需要知道Bijector是什么。

给出 https://gowrishankar.info/blog/bijectors-of-tensorflow-probability-a-guide-to-understand-the-motivation-and-mathematical-intuition-behind-them/ 的解释:

A bijector is a function of a tensor and its utility is to transform one distribution to another distribution. Bijectors bring determinism to the randomness of a distribution where the distribution by itself is a source of stochasticity. For example, If you want a log density of distribution, we can start with a Gaussian distribution and do log transform using bijector functions. Why do we need such transformations, the real world is full of randomness and probabilistic machine learning establishes a formalism for reasoning under uncertainty. i.e A prediction that outputs a single variable is not sufficient but has to quantify the uncertainty to bring in model confidence. Then to sample complex random variables that get closer to the randomness of nature, we seek the help of bijective functions.

简单来说就是对一个分布进行变换,比如X服从高斯分布,y=tanh(x),那么Y服从什么分布呢,Y的概率密度如何计算,Y分布如何抽样,可以说Bijector就是指分布的变换,而log_det_jacobian就是在分布变换时计算概率密度所需要用到的。

各个深度学习框架都针对机器学习中的这种概率分布变换的Bijector提供单独的计算方法,如:

paddle中的:

paddle.distribution.Transform

相关:

https://www.paddlepaddle.org.cn/documentation/docs/en/api/paddle/distribution/Transform_en.html

mindspore中的:

mindspore.nn.probability.distribution.TransformedDistribution

相关:

https://www.mindspore.cn/docs/zh-CN/r2.1/api_python/nn_probability/mindspore.nn.probability.distribution.TransformedDistribution.html

log_det_jacobian = 2 * (math.log(2) - dist - F.softplus(-2 * dist))

= log( tanh'(x) )

关于tanh函数的特性:

下图来自:

高斯函数的信息熵求解公式:

各个深度学习框架中的Probability模块的不足之处:

可以说在这个领域TensorFlow Probability (TFP)是最为功能强大和全面的,也是最为公认和广泛使用的,虽然我不喜欢用TensorFlow搞deep learning,但是必须要承认搞probability的深度学习的话还是用这个TensorFlow的TFP貌似更稳妥。

虽然Probability模块的可以自动实现分布变换后的概率密度,采样(sample),logP的计算,但是对于一些其他的计算其实支持并不是很好,如信息熵的计算,因为比如像信息熵这样的计算并不能由Probability模块自动获得,而是需要人为的设置,比如高斯分布的信息熵,这个就是需要人为手动的为不同的分布进行计算,因此可以说Probability模块并不能解决所有的分布变换后的新的统计量的计算,还是有一些需要手动推导计算公式并进行硬编码的,也或者是采用其他的近似的计算方法来解决。

相关:

TensorFlow推荐器和TensorFlow概率:使用TensorFlow概率进行概率建模简介

标准化流(Normalizing Flow)教程(一)

强化学习算法中的log_det_jacobian的更多相关文章

  1. 一文读懂 深度强化学习算法 A3C (Actor-Critic Algorithm)

    一文读懂 深度强化学习算法 A3C (Actor-Critic Algorithm) 2017-12-25  16:29:19   对于 A3C 算法感觉自己总是一知半解,现将其梳理一下,记录在此,也 ...

  2. 斯坦福大学公开课机器学习:machine learning system design | trading off precision and recall(F score公式的提出:学习算法中如何平衡(取舍)查准率和召回率的数值)

    一般来说,召回率和查准率的关系如下:1.如果需要很高的置信度的话,查准率会很高,相应的召回率很低:2.如果需要避免假阴性的话,召回率会很高,查准率会很低.下图右边显示的是召回率和查准率在一个学习算法中 ...

  3. 强化学习算法DQN

    1 DQN的引入 由于q_learning算法是一直更新一张q_table,在场景复杂的情况下,q_table就会大到内存处理的极限,而且在当时深度学习的火热,有人就会想到能不能将从深度学习中借鉴方法 ...

  4. 强化学习算法Policy Gradient

    1 算法的优缺点 1.1 优点 在DQN算法中,神经网络输出的是动作的q值,这对于一个agent拥有少数的离散的动作还是可以的.但是如果某个agent的动作是连续的,这无疑对DQN算法是一个巨大的挑战 ...

  5. 强化学习Q-Learning算法详解

    python风控评分卡建模和风控常识(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005214003&am ...

  6. 强化学习(十三) 策略梯度(Policy Gradient)

    在前面讲到的DQN系列强化学习算法中,我们主要对价值函数进行了近似表示,基于价值来学习.这种Value Based强化学习方法在很多领域都得到比较好的应用,但是Value Based强化学习方法也有很 ...

  7. ICML 2018 | 从强化学习到生成模型:40篇值得一读的论文

    https://blog.csdn.net/y80gDg1/article/details/81463731 感谢阅读腾讯AI Lab微信号第34篇文章.当地时间 7 月 10-15 日,第 35 届 ...

  8. 【转载】 DeepMind发表Nature子刊新论文:连接多巴胺与元强化学习的新方法

    原文地址: baijiahao.baidu.com/s?id=1600509777750939986&wfr=spider&for=pc 机器之心 18-05-15   14:26 - ...

  9. 【转载】 准人工智能分享Deep Mind报告 ——AI“元强化学习”

    原文地址: https://www.sohu.com/a/231895305_200424 ------------------------------------------------------ ...

  10. 深度强化学习(DRL)专栏(一)

    目录: 1. 引言 专栏知识结构 从AlphaGo看深度强化学习 2. 强化学习基础知识 强化学习问题 马尔科夫决策过程 最优价值函数和贝尔曼方程 3. 有模型的强化学习方法 价值迭代 策略迭代 4. ...

随机推荐

  1. Kernel调试追踪技术之 Kprobe on ARM64

    kprobe是什么? kprobe 是一种动态调试机制,用于debugging,动态跟踪,性能分析,动态修改内核行为等,2004年由IBM发布,是名为Dprobes工具集的底层实现机制[1][2],2 ...

  2. YoloDotNet v2.1:实时物体检测的利器

    项目介绍 YoloDotNet v2.1 是一个基于 C# 和 .NET 8 的实时物体检测框架,专为图像和视频中的物体检测而设计.它集成了 Yolov8 ~ Yolov11 模型,通过 ML.NET ...

  3. manim边做边学--有向图

    有向图和上一篇介绍的无向图基本一样,唯一的区别在于有向图的边有方向性,它表示的是顶点之间的单向或依赖关系. 有向图G一般表示为:G=<V,E>.和无向图一样,V是顶点集合,E是边的集合. ...

  4. node.js安装及环境配置基于Windows系统

    node.js安装及环境配置-Windows系统 1. 下载安装包 https://nodejs.org/zh-cn/download/ 根据自己电脑系统及位数选择,我的电脑是Windows系统.64 ...

  5. 云电脑玩游戏挑选标准,ToDesk实测体验

    大家玩游戏还在攒机吗?与其花费时间精力在组装游戏电脑上,不如用上最近兴起的云电脑软件.无需额外配备硬件设备,旧电脑原地变身成高性能电脑,随时随地享受游戏乐趣. 但市面上众多的云电脑软件,该怎么选择才能 ...

  6. ROS入门21讲(4)

    八.客户端Client的编程实现 1.话题模型 服务模型(客户端/服务器) 2.创建功能包 命令: $ cd ~/catkin_ws/src $ catkin_create_pkg learning_ ...

  7. CSP2024 游记 - 未完

    CSP2024 游记 \[written\ by:\mathbb{CMRHHH} \] 此时 :2024/10/25 ;18:30: 路途颠簸,作业先不写了吧--有些晕了,正在听杰伦的仙乐: CCF真 ...

  8. Mysql导出文本文件

    使用mysqldump命令导出文本文件 mysqldump -u root -pPassword -T 目标目录 dbname [tables] [option]; 其中: Password 参数表示 ...

  9. 终于找到了英特尔CPU缩缸的原因!如何自救?

    地址: https://www.youtube.com/watch?v=D0wOiillq_A

  10. 进程相互作用之信号量PV操作及其代码实现

    目录 信号量PV操作 基本介绍 数据结构 解决进程互斥问题 解决进程同步问题 代码实现(以同步问题为例) 信号量PV操作 基本介绍 信号量(Semaphore):是表示资源的实体,是一个与队列有关的整 ...