Spark RDD的依赖解读
在Spark中, RDD是有依赖关系的,这种依赖关系有两种类型
- 窄依赖(Narrow Dependency)
- 宽依赖(Wide Dependency)
以下图说明RDD的窄依赖和宽依赖

窄依赖
窄依赖指父RDD的每一个分区最多被一个子RDD的分区所用,表现为
- 一个父RDD的分区对应于一个子RDD的分区
- 两个父RDD的分区对应于一个子RDD 的分区。
如上面的map,filter,union属于第一类窄依赖,而join with inputs co-partitioned(对输入进行协同划分的join操作,也就是说先按照key分组然后shuffle write的时候一个父分区对应一个子分区)则为第二类窄依赖
如果有多个父RDD的分区对应于同一个子RDD的分区不能称之为窄依赖?
宽窄依赖与容错性
Spark基于lineage的容错性是指,如果一个RDD出错,那么可以从它的所有父RDD重新计算所得,如果一个RDD仅有一个父RDD(即窄依赖),那么这种重新计算的代价会非常小。
Spark基于Checkpoint(物化)的容错机制何解?在上图中,宽依赖得到的结果(经历过Shuffle过程)是很昂贵的,因此,Spark将此结果物化到磁盘上了,以备后面使用
宽依赖
宽依赖指子RDD的每个分区都要依赖于父RDD的所有分区,这是shuffle类操作,上图中的groupByKey和对输入未协同划分的join操作就是宽依赖。
窄依赖细说
窄依赖对优化很有利。逻辑上,每个RDD的算子都是一个fork/join(此join非上文的join算子,而是指同步多个并行任务的barrier):
把计算fork到每个分区,算完后join,然后fork/join下一个RDD的算子。如果直接翻译到物理实现,是很不经济的:一是每一个RDD(即使
是中间结果)都需要物化到内存或存储中,费时费空间;二是join作为全局的barrier,是很昂贵的,会被最慢的那个节点拖死。如果子RDD的分区到
父RDD的分区是窄依赖,就可以实施经典的fusion优化,把两个fork/join合为一个;如果连续的变换算子序列都是窄依赖,就可以把很多个
fork/join并为一个,不但减少了大量的全局barrier,而且无需物化很多中间结果RDD,这将极大地提升性能。Spark把这个叫做流水线 (pipeline)优化。
Spark流水线优化:

宽依赖细说
变换算子序列一碰上shuffle类操作,宽依赖就发生了,流水线优化终止。在具体实现
中,DAGScheduler从当前算子往前回溯依赖图,一碰到宽依赖,就生成一个stage来容纳已遍历的算子序列。在这个stage里,可以安全地实施流水线优化。然后,又从那个宽依赖开始继续回溯,生成下一个stage。
分区划分规则与首选位置
要深究两个问题:一,分区如何划分;二,分区该放到集群内哪个节点。这正好对应于RDD结构中另外两个域:分区划分器(partitioner)和首选位置(preferred locations)。
分区划分
分区划分对于shuffle类操作很关键,它决定了该操作的父RDD和子RDD之间的依赖类型。上文提到,同一个join算子,如果协同划分的话,两个父
RDD之间、父RDD与子RDD之间能形成一致的分区安排,即同一个key保证被映射到同一个分区,这样就能形成窄依赖。反之,如果没有协同划分,导致宽依赖。
所谓协同划分,就是指定分区划分器以产生前后一致的分区安排。Pregel和HaLoop把这个作为系统内置的一部分;而Spark
默认提供两种划分器:HashPartitioner和RangePartitioner,允许程序通过partitionBy算子指定。注意,HashPartitioner能够发挥作用,要求key的hashCode是有效的,即同样内容的key产生同样的hashCode。这对
String是成立的,但对数组就不成立(因为数组的hashCode是由它的标识,而非内容,生成)。这种情况下,Spark允许用户自定义
ArrayHashPartitioner。
首选位置
第二个问题是分区放置的节点,这关乎数据本地性:本地性好,网络通信就少。有些RDD产生时就
有首选位置,如HadoopRDD分区的首选位置就是HDFS块所在的节点。有些RDD或分区被缓存了,那计算就应该送到缓存分区所在的节点进行。再不然,就回溯RDD的lineage一直找到具有首选位置属性的父RDD,并据此决定子RDD的放置。
宽/窄依赖的概念不止用在调度中,对容错也很有用。如果一个节点宕机了,而且运算是窄依赖,那只要把丢失的父RDD分区重算即可,跟其他节点没有依赖。而宽依赖需要父RDD的所有分区都存在,
重算就很昂贵了。所以如果使用checkpoint算子来做检查点,不仅要考虑lineage是否足够长,也要考虑是否有宽依赖,对宽依赖加检查点是最物有所值的。
Spark中关于Dependency的源代码
package org.apache.spark import scala.reflect.ClassTag import org.apache.spark.annotation.DeveloperApi
import org.apache.spark.rdd.RDD
import org.apache.spark.serializer.Serializer
import org.apache.spark.shuffle.ShuffleHandle /**
* :: DeveloperApi ::
* Base class for dependencies.
*/
@DeveloperApi
abstract class Dependency[T] extends Serializable {
def rdd: RDD[T]
} /**
* :: DeveloperApi ::
* Base class for dependencies where each partition of the child RDD depends on a small number
* of partitions of the parent RDD. Narrow dependencies allow for pipelined execution.
*/
//这里是说,窄依赖是指子RDD的每个Partition只依赖于父RDD很少部分的的RDD,文档明显说的不对!窄依赖起码需要父RDD的每个Partition只被一个子RDD的Partition依赖
@DeveloperApi
abstract class NarrowDependency[T](_rdd: RDD[T]) extends Dependency[T] {
/**
* Get the parent partitions for a child partition.
* @param partitionId a partition of the child RDD
* @return the partitions of the parent RDD that the child partition depends upon
*/
def getParents(partitionId: Int): Seq[Int] override def rdd: RDD[T] = _rdd
} /**
* :: DeveloperApi ::
* Represents a dependency on the output of a shuffle stage. Note that in the case of shuffle,
* the RDD is transient since we don't need it on the executor side.
*
* @param _rdd the parent RDD
* @param partitioner partitioner used to partition the shuffle output
* @param serializer [[org.apache.spark.serializer.Serializer Serializer]] to use. If set to None,
* the default serializer, as specified by `spark.serializer` config option, will
* be used.
* @param keyOrdering key ordering for RDD's shuffles
* @param aggregator map/reduce-side aggregator for RDD's shuffle
* @param mapSideCombine whether to perform partial aggregation (also known as map-side combine)
*/
//ShuffleDependency指的是,子RDD的partition部分依赖于父RDD的每个Partition 部分依赖被称为 ShuffleDependency。
//其实 ShuffleDependency 跟 MapReduce 中 shuffle 的数据依赖相同(mapper 将其 output 进行 partition,然后每个 reducer 会将所有 mapper 输出中属于自己的 partition 通过 HTTP fetch 得到)。
@DeveloperApi
class ShuffleDependency[K: ClassTag, V: ClassTag, C: ClassTag](
@transient private val _rdd: RDD[_ <: Product2[K, V]],
val partitioner: Partitioner,
val serializer: Option[Serializer] = None,
val keyOrdering: Option[Ordering[K]] = None,
val aggregator: Option[Aggregator[K, V, C]] = None,
val mapSideCombine: Boolean = false)
extends Dependency[Product2[K, V]] { override def rdd: RDD[Product2[K, V]] = _rdd.asInstanceOf[RDD[Product2[K, V]]] private[spark] val keyClassName: String = reflect.classTag[K].runtimeClass.getName
private[spark] val valueClassName: String = reflect.classTag[V].runtimeClass.getName
// Note: It's possible that the combiner class tag is null, if the combineByKey
// methods in PairRDDFunctions are used instead of combineByKeyWithClassTag.
private[spark] val combinerClassName: Option[String] =
Option(reflect.classTag[C]).map(_.runtimeClass.getName) val shuffleId: Int = _rdd.context.newShuffleId() val shuffleHandle: ShuffleHandle = _rdd.context.env.shuffleManager.registerShuffle(
shuffleId, _rdd.partitions.size, this) _rdd.sparkContext.cleaner.foreach(_.registerShuffleForCleanup(this))
} /**
* :: DeveloperApi ::
* Represents a one-to-one dependency between partitions of the parent and child RDDs.
*/
@DeveloperApi
class OneToOneDependency[T](rdd: RDD[T]) extends NarrowDependency[T](rdd) {
override def getParents(partitionId: Int): List[Int] = List(partitionId)
} /**
* :: DeveloperApi ::
* Represents a one-to-one dependency between ranges of partitions in the parent and child RDDs.
* @param rdd the parent RDD
* @param inStart the start of the range in the parent RDD
* @param outStart the start of the range in the child RDD
* @param length the length of the range
*/
@DeveloperApi
class RangeDependency[T](rdd: RDD[T], inStart: Int, outStart: Int, length: Int)
extends NarrowDependency[T](rdd) { override def getParents(partitionId: Int): List[Int] = {
if (partitionId >= outStart && partitionId < outStart + length) {
List(partitionId - outStart + inStart)
} else {
Nil
}
}
}
ShuffleDependency的参数说明:
1.RDD数据集合中的元素需要是(K,V)类型,因为一般需要依据key进行shuffle,所以数据结构往往是key-value;同时Shuffle需要根据K做shuffle output的partition。
2.Partitioner,按照K进行分区的算法,比如HashPartitioner
3.Serializer,因为Shuffle过程需要有数据的网络传输,因此需要序列化,Serializer即是指定序列化算法
4.keyOrdering
5.aggregator,mapSideCombine用于map端的combine
6.shuffleId:每个shuffle操作都有一个唯一的ID
Spark RDD的依赖解读的更多相关文章
- Spark RDD 窄依赖研究
1.. 简介 spark从RDD依赖上来说分为窄依赖和宽依赖. 其中可以这样区分是哪种依赖:当父RDD的一个partition被子RDD的多个partitions引用到的时候则说明是宽依赖,否则为窄依 ...
- Spark RDD 宽窄依赖
RDD 宽窄依赖 RDD之间有一系列的依赖关系, 可分为窄依赖和宽依赖 窄依赖 从 RDD 的 parition 角度来看 父 RRD 的 parition 和 子 RDD 的 parition 之间 ...
- spark rdd 宽窄依赖理解
== 转载 == http://blog.csdn.net/houmou/article/details/52531205 Spark中RDD的高效与DAG图有着莫大的关系,在DAG调度中需要对计算过 ...
- Spark RDD详解 | RDD特性、lineage、缓存、checkpoint、依赖关系
RDD(Resilient Distributed Datasets)弹性的分布式数据集,又称Spark core,它代表一个只读的.不可变.可分区,里面的元素可分布式并行计算的数据集. RDD是一个 ...
- Spark RDD概念学习系列之RDD的依赖关系(宽依赖和窄依赖)(三)
RDD的依赖关系? RDD和它依赖的parent RDD(s)的关系有两种不同的类型,即窄依赖(narrow dependency)和宽依赖(wide dependency). 1)窄依赖指的是每 ...
- Spark RDD概念学习系列之rdd的依赖关系彻底解密(十九)
本期内容: 1.RDD依赖关系的本质内幕 2.依赖关系下的数据流视图 3.经典的RDD依赖关系解析 4.RDD依赖关系源码内幕 1.RDD依赖关系的本质内幕 由于RDD是粗粒度的操作数据集,每个Tra ...
- Spark核心RDD、什么是RDD、RDD的属性、创建RDD、RDD的依赖以及缓存、
1:什么是Spark的RDD??? RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行 ...
- Spark RDD基本概念、宽窄依赖、转换行为操作
目录 RDD概述 RDD的内部代码 案例 小总结 转换.行动算子 宽.窄依赖 Reference 本文介绍一下rdd的基本属性概念.rdd的转换/行动操作.rdd的宽/窄依赖. RDD:Resilie ...
- 【Spark】RDD的依赖关系和缓存相关知识点
文章目录 RDD的依赖关系 宽依赖 窄依赖 血统 RDD缓存 概述 缓存方式 RDD的依赖关系 RDD和它依赖的父RDD的关系有两种不同的类型,即窄依赖(narrow dependency) 和宽依赖 ...
随机推荐
- mysql 如何用root 登录
mysql -uroot -p 如果没有密码,按两下回车就进去了
- 微信红包签名算法 C#代码实现
string stringA = "appid=wxd930ea5d5a258f4f&body=test&device_info=1000&mch_id=100001 ...
- [ZOJ 3662] Math Magic (动态规划+状态压缩)
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3662 之前写过这道题,结果被康神吐槽说代码写的挫. 的确,那时候 ...
- SparkSQL On Yarn with Hive,操作和访问Hive表
转载自:http://lxw1234.com/archives/2015/08/466.htm 本文将介绍以yarn-cluster模式运行SparkSQL应用程序,访问和操作Hive中的表,这个和在 ...
- cmd中目录的变更
1.在同一个盘符下的目录的切换使用cd加空格加子目录进行切换 2.在不同的盘符下进行切换直接使用在当前目录后面加上其他盘符的名称即可
- iOS UILabel详解
1.创建 CGRect rect = CGRectMake(100, 200, 50, 50); UILabel *label = [[UILabel alloc] initWithFrame:rec ...
- spark1.2.0版本SparkSQL使用parquet类型注意事项
在Spark1.2.0版本中是用parquet存储类型时注意事项: sql语句: select * from order_created_dynamic_partition_parquet; 在spa ...
- 实验室中搭建Spark集群和PyCUDA开发环境
1.安装CUDA 1.1安装前工作 1.1.1选取实验器材 实验中的每台计算机均装有双系统.选择其中一台计算机作为master节点,配置有GeForce GTX 650显卡,拥有384个CUDA核心. ...
- dll 学习(一)
DLL(Dynamic Link Library)的概念,你可以简单的把DLL看成一种仓库,它提供给你一些可以直接拿来用的变量.函数或类.在仓库的发展史上经历了"无库-静态链接库-动态链接库 ...
- 集合函数COUNT
直接计算函数COUNT(*)的值,例如,计算pet表中猫的只数: 计算pet表中species的列的数目: 假如你想知道有多少不同种类的的宠物数目.你可以通过使用关键字DISTINCT来得到该数目: ...