题目链接:bzoj2458: [BeiJing2011]最小三角形

学习推荐博客:分治法编程问题之最接近点对问题的算法分析

题解:先将所有点按x值排列,然后每次将当前区间[l,r]分成左右两半递归求解周长最小三角形。考虑到两半区间之间可能有连成最小三角形的情况,设dd为两半区间中最小三角形周长的最小值,筛选满足要求的点(x值与中点坐标x值的距离小于dd),然后按y值排序,进而暴搜出周长最小三角形。

 #include<cstdio>
#include<cmath>
#include<queue>
#include<cstring>
#include<string>
#include<algorithm>
#define CLR(a,b) memset((a),(b),sizeof((a)))
using namespace std; typedef long long ll;
const double inf = 0x3f3f3f3f;
const int N = 2e5+;
int n;
struct Point{
int x, y;
}a[N], midp[N];
double dis(Point a, Point b){
return sqrt(.*(a.x - b.x)*(a.x - b.x) + .*(a.y - b.y)*(a.y - b.y));
}
bool cmp1(Point a, Point b){
return a.x < b.x;
}
bool cmp2(Point a, Point b){
return a.y < b.y;
}
double solve(int l, int r){
if(l == r ||l + == r) return inf;
if(l + == r) return dis(a[l],a[l+]) + dis(a[l+],a[r]) + dis(a[l],a[r]); int m = l + (r-l)/;
double d1 = solve(l, m);
double d2 = solve(m+, r);
double d = min(d1, d2);
double dd = d/2.0;
double ans = d; int cnt = , i, j, k;
for(i = l; i <= r; ++i)
if(fabs(a[m].x - a[i].x) <= dd)
midp[++cnt] = a[i];
sort(midp+, midp++cnt, cmp2); for(i = ; i < cnt-; ++i){
for(j = i+; j < cnt; ++j){
if(midp[j].y - midp[i].y > dd)
break;
for(k = j+; k <= cnt; ++k){
if(midp[k].y - midp[i].y > dd)
break;
double c = dis(midp[i],midp[j])+dis(midp[j],midp[k])+dis(midp[i],midp[k]);
ans = min(ans, c);
}
}
}
return ans;
}
int main(){
scanf("%d", &n);
for(int i = ; i <= n; ++i)
scanf("%d%d", &a[i].x, &a[i].y);
sort(a+, a++n, cmp1);
printf("%.6lf\n", solve(,n));
return ;
}

bzoj2458: [BeiJing2011]最小三角形(分治+几何)的更多相关文章

  1. [BZOJ2458][BeiJing2011]最小三角形(分治)

    求平面上n个点组成的周长最小的三角形. 回忆平面最近点对的做法,找到横坐标的中点mid分治到两边,合并时考虑离mid横坐标不超过当前最小值d的所有点,按y排序后暴力更新答案. 这个题也一样,先分治到两 ...

  2. 分治 - 计算几何 - BZOJ2458,[BeiJing2011]最小三角形

    http://www.lydsy.com/JudgeOnline/problem.php?id=2458 [BeiJing2011]最小三角形 描述 Frisk现在遇到了一个有趣的问题. 平面上有N个 ...

  3. BZOJ2458 Beijing2011最小三角形(分治)

    类似于平面最近点对,考虑分治,即分别计算分割线两侧的最小三角形再考虑跨过线的三角形. 复杂度证明也是类似的,对于某一个点,在另一侧可能与其构成最小三角形的点在一个d*d/2的矩形内(两边之和大于第三边 ...

  4. BZOJ2458: [BeiJing2011]最小三角形

    类似分治最近点对的方法乱搞一下就行. #include<bits/stdc++.h> #define N 200010 #define M (s+t>>1) using nam ...

  5. BZOJ 2458: [BeiJing2011]最小三角形 (分治)

    分治就是了. 类似于分治找最近/远点对. CODE #include <bits/stdc++.h> using namespace std; const double eps = 1e- ...

  6. bzoj-2458 2458: [BeiJing2011]最小三角形(计算几何+分治)

    题目链接: 2458: [BeiJing2011]最小三角形 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1101  Solved: 380 Des ...

  7. bzoj 2458: [BeiJing2011]最小三角形 题解

    [前言]话说好久没有写题解了.到暑假了反而忙.o(╯□╰)o [原题] 2458: [BeiJing2011]最小三角形 Time Limit: 10 Sec  Memory Limit: 128 M ...

  8. BZOJ 2458: [BeiJing2011]最小三角形 | 平面分治

    题目: 给出若干个点 求三个点构成的周长最小的三角形的周长(我们认为共线的三点也算三角形) 题解: 可以参考平面最近点对的做法 只不过合并的时候改成枚举三个点更新周长最小值,其他的和最近点对大同小异 ...

  9. [BZOJ]2458: [BeiJing2011]最小三角形

    题目大意:给出平面上n个点,求最小的由这些点组成的三角形的周长.(N<=200,000) 思路:点按x坐标排序后分治,每次取出与排在中间的点的横坐标相差不超当前答案一半的点,按y坐标排序后再暴力 ...

随机推荐

  1. 随机内容生成(random模块)

    摘抄于: 低调的python小子 当梦想照进现实  幸福近在咫尺 [jpg]http://ip.ipwind.cn/msn.png[/jpg] Python中的random模块用于生成随机数.下面介绍 ...

  2. StopWatch的使用

    //StopWatch在System.Diagnostics命名控件,要使用它就要先引用这个命名空间. //其使用方法如下: //var stopWatch = new StopWatch(); // ...

  3. ubuntu14.04LTS 下storm单机版安装配置

    1.下载storm 的安装文件 http://www.apache.org/dyn/closer.cgi/incubator/storm/apache-storm-0.9.2-incubating/a ...

  4. JSP的隐式对象

    JSP支持九个自动定义的变量,江湖人称隐含对象.这九个隐含对象的简介见下表: 参考资料:http://www.runoob.com/jsp/jsp-syntax.html

  5. [转发] 理解 oauth 2.0

    原文: http://www.ruanyifeng.com/blog/2014/05/oauth_2_0.html oauth 的各种编程语言实现: http://oauth.net/2/ 理解OAu ...

  6. poj2079Triangle(N点中三点组成三角形面积最大)

    链接 根据旋转卡壳的思想,找到当前边的最远点. 确定i,j找到最远的k使 cross(i,j,k)最大,那么i,j+1时只需从k+1开始找即可 . #include <iostream> ...

  7. 【Linux日志】系统日志及分析

    Linux系统拥有非常灵活和强大的日志功能,可以保存几乎所有的操作记录,并可以从中检索出我们需要的信息. 大部分Linux发行版默认的日志守护进程为 syslog,位于 /etc/syslog 或 / ...

  8. hdu5785(极角排序求所有锐角钝角个数)

    做法很显然,求出所有的锐角和钝角就能求出有多少个锐角三角形了. 我用了愚钝的方法,写了两三个小时... 看了下别人简单的代码.学习了下做法. sort(temp+,temp+cnt+);//排序 Fo ...

  9. Microsoft VS 2008 过期解决方法

    开始>控制面板>添加或删除程序 里找到VS2008,点“更改/删除”,出现: 然后,打开“显示Visual Studio试用版序列号输入框小程序”的软件(单击链接可以转到下载地址),显示: ...

  10. unicode 和 utf-8 的关系和解释

    首先一个字节就是8个晶体管同时发出的信号集, unicode就是一套编码,所有的字符都用2个字节表示,不像gbk和gb2312既保持了以前的ansi/ascii的字符单个字节编码,有发明了两个字节保存 ...