P6222 「简单题」加强版 莫比乌斯反演 线性筛积性函数
LINK:简单题
以前写过弱化版的 不过那个实现过于垃圾 少预处理了一个东西。
这里写一个实现比较精细了。
最后可推出式子:\(\sum_{T=1}^nsum(\frac{n}{T})\sum_{x|T}(\frac{T}{x})^kx^k\mu(\frac{T}{x})^2\mu(x)\)
其中 \(sum(x)=\sum_{i=1}^{x}\sum_{j=1}^{x}(i+j)^k\)
先看前面的那项 由于是完全积性函数先筛出\(i^k\)复杂度可近乎是O(n)的。
考虑上面的式子怎么求?再设\(w_x=\sum_{i=1}^x(i+x)^k\)
显然 \(w_x=w_{x-1}+(2x-1)^k+(2x)^k-x^k\)
显然 \(sum_x=sum_{x-1}+2w_x-(2x)^k\)
后面那项 考虑积性函数筛出 可以发现当其中的质因子p的指数>=3时为0.
那么每次可以特判一下是否为2 简单计算一下即可。
有点卡空间 所以就把 sum w 前缀和数组给整到一块了/cy
const int MAXN=10000010,maxn=2000010;
int T,n,top,k;
int p[maxn];
bitset<MAXN<<1>v;
ui s[MAXN<<1],b[MAXN<<1];
inline ui ksm(ui b,int p)
{
ui cnt=1;
while(p)
{
if(p&1)cnt=cnt*b;
p=p>>1;b=b*b;
}
return cnt;
}
inline void prepare()
{
int m=n<<1;b[1]=s[1]=1;
rep(2,m,i)
{
if(!v[i])
{
p[++top]=i;
s[i]=ksm(i,k);
b[i]=s[i]*i-s[i];
}
rep(1,top,j)
{
if(p[j]>m/i)break;
v[i*p[j]]=1;
s[i*p[j]]=s[i]*s[p[j]];
if(i%p[j]==0)
{
if(i/p[j]%p[j]!=0)b[i*p[j]]=s[p[j]]*s[p[j]]*p[j]*(-1)*b[i/p[j]];
break;
}
b[i*p[j]]=b[i]*b[p[j]];
}
}
ui las=0;
rep(1,n,i)
{
b[i]+=b[i-1];
s[i]=las+s[2*i-1]+s[i<<1]-s[i];
las=s[i];s[i]=-s[i<<1]+s[i-1]+2*s[i];
}
}
int main()
{
//freopen("1.in","r",stdin);
get(T);get(n);get(k);
prepare();
while(T--)
{
get(n);ui ans=0;
int w1,ww;
for(int i=1;i<=n;i=ww+1)
{
w1=n/i;ww=n/w1;
ans+=s[w1]*(b[ww]-b[i-1]);
}
printf("%u\n",ans);
}
return 0;
}
P6222 「简单题」加强版 莫比乌斯反演 线性筛积性函数的更多相关文章
- 莫比乌斯反演/线性筛/积性函数/杜教筛/min25筛 学习笔记
最近重新系统地学了下这几个知识点,以前没发现他们的联系,这次总结一下. 莫比乌斯反演入门:https://blog.csdn.net/litble/article/details/72804050 线 ...
- BZOJ 4407: 于神之怒加强版 莫比乌斯反演 + 线筛积性函数
Description 给下N,M,K.求 Input 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意 ...
- 【bzoj4407】于神之怒加强版 莫比乌斯反演+线性筛
题目描述 给下N,M,K.求 输入 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意义如上式所示. 输出 如题 ...
- 【BZOJ-4407】于神之怒加强版 莫比乌斯反演 + 线性筛
4407: 于神之怒加强版 Time Limit: 80 Sec Memory Limit: 512 MBSubmit: 241 Solved: 119[Submit][Status][Discu ...
- BZOJ 4407: 于神之怒加强版 [莫比乌斯反演 线性筛]
题意:提前给出\(k\),求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m gcd(i,j)^k\) 套路推♂倒 \[ \sum_{D=1}^n \sum_{d|D ...
- BZOJ4407: 于神之怒加强版(莫比乌斯反演 线性筛)
Description 给下N,M,K.求 感觉好迷茫啊,很多变换看的一脸懵逼却又不知道去哪里学.一道题做一上午也是没谁了,, 首先按照套路反演化到最后应该是这个式子 $$ans = \sum_{d ...
- 线性筛积性函数+反演T套路——bzoj4407
#include<bits/stdc++.h> using namespace std; #define ll long long #define mod 1000000007 #defi ...
- 【bzoj2693】jzptab 莫比乌斯反演+线性筛
题目描述 输入 一个正整数T表示数据组数 接下来T行 每行两个正整数 表示N.M 输出 T行 每行一个整数 表示第i组数据的结果 样例输入 1 4 5 样例输出 122 题解 莫比乌斯反演+线性筛 由 ...
- 【bzoj2694】Lcm 莫比乌斯反演+线性筛
题目描述 求$\sum\limits_{i=1}^n\sum\limits_{j=1}^m|\mu(gcd(i,j))|lcm(i,j)$,即$gcd(i,j)$不存在平方因子的$lcm(i,j)$之 ...
随机推荐
- 使用flex实现5种常用布局
Sticky Footer 经典的上-中-下布局. 当页面内容高度小于可视区域高度时,footer 吸附在底部:当页面内容高度大于可视区域高度时,footer 被撑开排在 content 下方 dem ...
- HDU5961 传递
传递 因为文化课复习实在捉急qwq,题解就一切从简了qwq 简单说一说 上来一看这道题没看出来突破点在哪... 去HDU上看原题,发现原题是带样例的图解的,然鹅还是没找到思路(太菜了吧) 没办法看了一 ...
- Spring-Validation(数据校验) 你值得拥有
前言 最近看到很多童鞋在项目中的对请求参数的校验都用的if来判断各参数的属性,如: if(StringUtils.isBlank(username)){ return RR.exception(&qu ...
- BERT源码分析及使用方法
本文原作者:梁源 BERT (Bidirectional Encoder Representations from Transformers) 官方代码库 包含了BERT的实现代码与使用BERT进行文 ...
- python 面向对象专题(十):特殊方法 (三)__get__、__set__、__delete__ 描述符(三)方法是描述符
在类中定义的函数属于绑定方法(bound method),因为用户定义的函数都有 __get__ 方法,所以依附到类上时,就相当于描述符.示例 20-13 演示了从 面向对象专题(九)示例 20-8 ...
- day4 python 运算符
python运算符 1.算数运算符( + - * / // % ** ) # + - * / // % ** # 加 减 乘 除 整除 余数 幂 #注意 #1. / 得到浮点型, // 得看被除数 ...
- CondenseNet:可学习分组卷积,原作对DenseNet的轻量化改造 | CVPR 2018
CondenseNet特点在于可学习分组卷积的提出,结合训练过程进行剪枝,不仅能准确地剪枝,还能继续训练,使网络权重更平滑,是个很不错的工作 来源:晓飞的算法工程笔记 公众号 论文:Neural ...
- Bash 脚本编程
概述 Bash (GNU Bourne-Again Shell) 是许多Linux发行版的默认Shell. shell语法 变量 定义:your_name="hellohhy" 使 ...
- canvas : 几个入门需要的基本概念
这段时间做项目需要用canvas. 而我在看文档的时候,发现canvas是一个很独立的API:和DOM BOM基本上没什么关系. 在学习canvas的时候需要了解很多概念,否则看某些文档的讲解可能会看 ...
- P3756 [CQOI2017]老C的方块
题目链接 看到网格图+最优化问题,当然要想黑白染色搞网络流.不过这道题显然无法用黑白染色搞定. 仔细观察那四种图形,发现都是蓝线两边一定有两个格子,两个格子旁边一定还有且仅有一个格子.因此我们可以这么 ...