package matrix

import (
"math"
"github.com/astaxie/beego"
) type Matrix4 struct {
Elements [16]float64 `json:"elements"`
} type SQ struct {
//矩阵结构
M,N int //m是列数,n是行数
Data [][]float64
} //矩阵定义
func (this*SQ)Set(m int,n int,data []float64) {
//m是列数,n是行数,data是矩阵数据(从左到右由上到下填充)
this.M=m
this.N=n
if len(data)!=this.M*this.N {
beego.Debug("矩阵定义失败")
return
}else {
k := 0
if this.M*this.N == len(data){
for i := 0; i < this.N; i++ {
var tmpArr []float64
for j := 0; j < this.M; j++ {
tmpArr = append(tmpArr, data[k])
k++
}
this.Data = append(this.Data, tmpArr)
}
}else {
beego.Debug("矩阵定义失败")
return
}
}
}
//a的列数和b的行数相等
//矩阵乘法
func Mul(a SQ,b SQ) [][]float64{
if a.M==b.M {
res := [][]float64{}
for i:=0;i<a.M;i++ {
t := []float64{}
for j:=0;j<b.M;j++ {
r := float64(0)
for k:=0;k<a.M;k++ {
r += a.Data[i][k]*b.Data[k][j]
}
t = append(t, r)
}
res = append(res,t)
}
return res
}else {
beego.Debug("两矩阵无法进行相乘运算")
return [][]float64{}
}
/*一个应用的例子
a := [][]int{
{1,2},
{3,4},
{5,6},
}
b := [][]int{
{1,2,3},
{3,4,1},
}
A := SQ{
2,3,
a,
}
B := SQ{
3,2,
b,
} res := mul(A,B)
*/
} //计算n阶行列式(N=n-1)
func Det(Matrix [][]float64,N int) float64 {
var T0,T1,T2,Cha int
var Num float64
var B [][]float64 if N>0 {
Cha=0
for i := 0; i < N; i++ {
var tmpArr []float64
for j := 0; j < N; j++ {
tmpArr = append(tmpArr, 0)
}
B = append(B, tmpArr)
}
Num=0
for T0=0;T0<=N;T0++{ //T0循环
for T1=1;T1<=N;T1++ { //T1循环
for T2=0;T2<=N-1;T2++ { //T2循环
if T2==T0 {
Cha = 1
}
B[T1-1][T2]=Matrix[T1][T2+Cha]
}//T2循环
Cha=0
}//T1循环
Num=Num+Matrix[0][T0]*Det(B,N-1)*math.Pow(-1,float64(T0))
}//T0循环
return Num
}else if N==0 {
return Matrix[0][0]
}
return 0
} //矩阵求逆(N=n-1)
func Inverse(Matrix [][]float64,N int) (MatrixC [][]float64) {
var T0,T1,T2,T3 int
var B [][]float64
for i := 0; i < N; i++ {
var tmpArr []float64
for j := 0; j < N; j++ {
tmpArr = append(tmpArr, 0)
}
B = append(B, tmpArr)
}
Chay := 0
Chax := 0
var add float64
add = 1/Det(Matrix,N)
for T0=0;T0<=N;T0++{
for T3=0;T3<=N;T3++{
for T1=0;T1<=N-1;T1++{
if T1<T0 {
Chax = 0
}else {
Chax = 1
}
for T2=0;T2<=N-1;T2++{
if T2<T3 {
Chay = 0
}else{
Chay = 1
}
B[T1][T2]=Matrix[T1+Chax][T2+Chay]
}//T2循环
}//T1循环
Det(B,N-1)
MatrixC[T3][T0]=Det(B,N-1)*add*(math.Pow(-1, float64(T0+T3)))
}
}
return MatrixC
}

golang 矩阵乘法、行列式、求逆矩阵的更多相关文章

  1. hdu2371 矩阵乘法(求序列位置改变m次后的序列)

    题意:       给你一个字符串,然后让你执行m次操作,每次操作把当前的字符串映射到他给你的位置序列的位置,比如给的是 3 1 2,第一步就是把原来的3的位置的字母变到1的位置,1的变到2的位置,2 ...

  2. Scout YYF I POJ - 3744【矩阵乘法优化求概率】

    题意: 一条路上有 $n$ 个地雷,YYF 从位置 $1$ 出发,走一步的概率为 $p$,走两步的概率是 $(1-p)$.求 YYF 能顺利通过这条路的概率. 数据范围: $1\leq n \leq ...

  3. 数学(矩阵乘法):HDU 4565 So Easy!

    So Easy! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  4. 【poj3070】矩阵乘法求斐波那契数列

    [题目描述] 我们知道斐波那契数列0 1 1 2 3 5 8 13…… 数列中的第i位为第i-1位和第i-2位的和(规定第0位为0,第一位为1). 求斐波那契数列中的第n位mod 10000的值. [ ...

  5. ☆ [HDU2157] How many ways?? 「矩阵乘法求路径方案数」

    传送门:>Here< 题意:给出一张有向图,问从点A到点B恰好经过k个点(包括终点)的路径方案数 解题思路 一道矩阵乘法的好题!妙哉~ 话说把矩阵乘法放在图上好神奇,那么跟矩阵唯一有关的就 ...

  6. LOJ.6074.[2017山东一轮集训Day6]子序列(DP 矩阵乘法)

    题目链接 参考yww的题解.本来不想写来但是他有一些笔误...而且有些地方不太一样就写篇好了. 不知不觉怎么写了这么多... 另外还是有莫队做法的...(虽然可能卡不过) \(60\)分的\(O(n^ ...

  7. C++中计算矩阵的行列式

    使用eigen库: 求行列式: #include <iostream> #include <Eigen/Dense> using namespace std; using na ...

  8. 洛谷P7112 行列式求值

    行列式求值 这是一个让你掉头发的模板题 行列式的定义 行列式 (\(\texttt{Determinant}\)) 是一个函数定义,取值是一个标量. 对一个 \(n\times n\) 的矩阵 \(A ...

  9. CH Round #30 摆花[矩阵乘法]

    摆花 CH Round #30 - 清明欢乐赛 背景及描述 艺术馆门前将摆出许多花,一共有n个位置排成一排,每个位置可以摆花也可以不摆花.有些花如果摆在相邻的位置(隔着一个空的位置不算相邻),就不好看 ...

随机推荐

  1. Gitlab 快速部署及日常维护 (一)

    一.GitLab简介GitLab 是一个用于仓库管理系统的开源项目,使用Git作为代码管理工具,并在此基础上搭建起来的web服务 二.GitLab系统架构git用户的主目录通常是/home/git(~ ...

  2. 3.Work Queues

    标题 : 3.Work Queues 目录 : RabbitMQ 序号 : 3 var channel1 = _connection.CreateModel(); channel1.BasicQos( ...

  3. hdu-1159 1087 1257(dp)

    本文就最长公共子序列,最长连续递增子序列的长度,最大连续递增子序列的值进行对比. hdu-1159: Common Subsequence Time Limit: 2000/1000 MS (Java ...

  4. Java之先行发生原则与volatile关键字详解

    volatile关键字可以说是Java虚拟机提供的最轻量级的同步机制,但是它并不容易完全被正确.完整地理解,以至于许多程序员都习惯不去使用它,遇到需要处理多线程数据竞争问题的时候一律使用synchro ...

  5. 关于FFT的一些理解,以及如何手工计算FFT加深理解和验证正确性

    总结缺少逻辑性和系统性,主要便于自己理解和记忆 关于一维FFT的 于是复系数Cn是图像傅里叶变换的yn列向量 于是我们看到最后引入,Cn这个复系数的模来表征频率波的振幅记为Sn(即简谐波叠加的数量 然 ...

  6. Linux 驱动框架---驱动中的阻塞

    描述和API 阻塞IO和非阻塞IO的应用编程时的处理机制是不同的,如果是非阻塞IO在访问资源未就绪时就直接返回-EAGAIN,反之阻塞IO则会使当前用户进程睡眠直到资源可用.从应用场景来说两种方式分别 ...

  7. vue component :is

    vue component :is Vue <component> element https://vuejs.org/v2/guide/components.html#Dynamic-C ...

  8. CVS、SVN、Git、GitHub :版本控制系统

    1 1 1 Git常用命令 1 1 1 1 1 1 https://www.codecademy.com/learn/learn-git Learn Git You have now been int ...

  9. 在线可视化设计网站 & 在线编辑器

    在线可视化设计网站 在线编辑器:海报编辑器.H5 编辑器.视频编辑器.音频编辑器.抠图编辑器 在线 拖拽 可视化 编辑器 Canvas WebGL Canva With Canva, anyone c ...

  10. 微信公众号 webfullstack

    微信公众号 webfullstack weixin refs https://mp.weixin.qq.com/cgi-bin/loginpage?t=wxm2-login&lang=zh_C ...