Maximum Diameter

题目大意

定义长度为 \(n\) 的序列 \(a\) 的权值为:

  • 所有的 \(n\) 个点的第 \(i\) 个点的度数为 \(a_i\) 的树的直径最大值,如果不存在这样的树,其权值为 \(0\)。

给定 \(n\),求所有长度为 \(n\) 的序列的权值和。

思路分析

\(n\) 个点的树的边数为 \(n-1\),总度数为 \(2n-2\),故序列 \(a\) 的权值不为 \(0\) 当且仅当 \(\sum a=2n-2\) 且 \(a_i>0\),因此我们只需要考虑这样的序列即可。

考虑如何根据给定序列构造出直径最大的树,设 \(a\) 中有 \(k\) 个 \(1\),也就是树上有 \(k\) 个叶子节点,那么我们可以将剩下的 \(n-k\) 个节点全部串在一起,再在两端放上两个叶子节点,用 \(n-k+2\) 个点构造出一条长 \(n-k+1\) 的链,其余的叶子节点挂在链上,显然这是最优方案,直径为 \(n-k+1\)。

考虑计数。枚举 \(k\),那么叶子节点的选择方案数为 \({n \choose k}\)。而非叶子节点的度数必须大于 \(1\),且有 \(n-k\) 个,又因为剩余的可用度数为 \(2n-2-k\),所以这个问题等价于将 \(2n-2-k\) 个相同的球放在 \(n-k\) 个盒子里,且每个盒子的球必须大于 \(1\),由插板法易得其方案数为:

\[{(2n-2-k)-2(n-k)+(n-k)-1\choose (2n-2-k)-2(n-k)}={n-3\choose k-2}
\]

再算上直径产生的贡献,故我们所求式即:

\[\sum_{k=1}^n{n\choose k}{n-3\choose k-2}(n-k+1)
\]

这个式子可以 \(O(n)\) 计算,但这显然不够,我们需要继续化简。

我们有以下两个式子:

  • 吸收恒等式:\(k{n\choose k}=n{n-1\choose k-1}\)

  • 范德蒙德卷积:\(\sum\limits_{i=0}^k{n\choose i}{m\choose k-i}={n+m\choose k}\)

一式可以直接拆组合数简单证明,二式通过组合意义显然成立。

然后我们就可以通过以上两个式子对所求式进行化简了:

\[\begin{aligned}
\sum_{k=1}^n{n\choose k}{n-3\choose k-2}(n-k+1)&=
-\sum_{k=1}^n{n\choose k}{n-3\choose k-2}(k-2+1-n)\\&=
-\sum_{k=1}^n{n\choose k}{n-3\choose k-2}(k-2)+(n-1)\sum_{k=1}^n{n\choose k}{n-3\choose k-2}\\&=
(n-1)\sum_{k=1}^n{n\choose k}{n-3\choose k-2}-(n-3)\sum_{k=1}^n{n\choose k}{n-4\choose k-3}\\&=
(n-1)\sum_{k=1}^n{n\choose k}{n-3\choose n-k-1}-(n-3)\sum_{k=1}^n{n\choose k}{n-4\choose n-k-1}\\&=
(n-1){2n-3\choose n-1}-(n-3){2n-4\choose n-3}
\end{aligned}\]

化到这样就可以 \(O(1)\) 计算了,只需要 \(O(n)\) 预处理组合数就行了。

代码

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath> using namespace std;
const int N = 2002000, L = 2000000, mod = 998244353;
#define int long long int fac[N], inv[N];
int T, n; int q_pow(int a, int b){
int res = 1;
while (b) {
if (b & 1) res = (res * a) % mod;
a = (a * a) % mod;
b >>= 1;
}
return res;
} int C(int n, int m){
if(n < m || n < 0 || m < 0) return 0;
return fac[n] * (inv[m] * inv[n - m] % mod) % mod;
} signed main(){
fac[0] = 1;
for (int i = 1; i <= L; i ++) fac[i] = fac[i - 1] * i % mod;
inv[L] = q_pow(fac[L], mod - 2);
for (int i = L; i >= 1; i --) inv[i - 1] = inv[i] * i % mod;
scanf("%lld", &T);
while (T --) {
scanf("%lld", &n);
int res1 = (n - 1) * C(2 * n - 3, n - 1) % mod;
int res2 = (n - 3) * C(2 * n - 4, n - 3) % mod;
int ans = (res1 - res2 + mod) % mod;
cout << ans << '\n';
}
return 0;
}

Maximum Diameter 题解的更多相关文章

  1. Educational Codeforces Round 55 (Rated for Div. 2):D. Maximum Diameter Graph

    D. Maximum Diameter Graph 题目链接:https://codeforces.com/contest/1082/problem/D 题意: 给出n个点的最大入度数,要求添加边构成 ...

  2. Educational Codeforces Round 55 (Rated for Div. 2) D. Maximum Diameter Graph (构造图)

    D. Maximum Diameter Graph time limit per test2 seconds memory limit per test256 megabytes inputstand ...

  3. C#版 - Leetcode 414. Third Maximum Number题解

    版权声明: 本文为博主Bravo Yeung(知乎UserName同名)的原创文章,欲转载请先私信获博主允许,转载时请附上网址 http://blog.csdn.net/lzuacm. C#版 - L ...

  4. Codeforces 1082 D. Maximum Diameter Graph-树的直径-最长链-构造题 (Educational Codeforces Round 55 (Rated for Div. 2))

    D. Maximum Diameter Graph time limit per test 2 seconds memory limit per test 256 megabytes input st ...

  5. [CF1082D]Maximum Diameter Graph

    题目描述 Description Graph constructive problems are back! This time the graph you are asked to build sh ...

  6. CF1082D:Maximum Diameter Graph (简单构造)

    Graph constructive problems are back! This time the graph you are asked to build should match the fo ...

  7. [LeetCode]Maximum Subarray题解

    Maximum Subarray: Find the contiguous subarray within an array (containing at least one number) whic ...

  8. CodeForces 1082 D Maximum Diameter Graph

    题目传送门 题意:现在有n个点,每个点的度数最大为di,现在要求你构成一棵树,求直径最长. 题解:把所有度数为2的点先扣出来,这些就是这颗树的主干,也就是最长的距离. 然后我们把度数为2的点连起来,之 ...

  9. D. Maximum Diameter Graph 贪心+图论+模拟

    题意:给出n个点的度数列 上限(实际点可以小于该度数列)问可以构造简单路最大长度是多少(n个点要连通 不能有平行边.重边) 思路:直接构造一条长链  先把度数为1的点 和度数大于1的点分开  先把度数 ...

  10. Codeforces 1082D Maximum Diameter Graph (贪心构造)

    <题目链接> 题目大意:给你一些点的最大度数,让你构造一张图,使得该图的直径最长,输出对应直径以及所有的边. 解题分析:一道比较暴力的构造题,首先,我们贪心的想,要使图的直径最长,肯定是尽 ...

随机推荐

  1. 如何使用 Terraform 和 Git 分支有效管理多环境?

    作者|Sumeet Ninawe 翻译|Seal软件 链接|https://spacelift.io/blog/terraform-environments 通常我们使用 Terraform 将我们的 ...

  2. IIS部署的应用无法自动注册到Nacos

    问题描述: 自己开发的某系统后台API接入nacos,在IIS上部署无法自动注册到nacos服务列表中.其根本原因是网站处于休眠状态,当某请求访问该网站时,网站被激活,nacos注册成功. 但这块有个 ...

  3. [C#]WPF 分辨率的无关性的问题

    什么是WPF的分辨率无关性? 首先得解什么是Dpi(Density independent pixels ,设备无关像素),百度百科的解释DPI是指每英寸的像素,对应界面显示即是屏幕上每英寸的像素. ...

  4. 【博客索引】Welcome!!

    欢迎来到 Daniel_yzy 的博客园 个人简介 初二,男,就读于长沙市一中双语实验学校. 爱好 OI,一生讨厌文化课. 当然,也是唯物主义无神论者. 已有 npy,要问是谁的话可以私下问. 博客索 ...

  5. Power AutoMate: 变量专栏

    背景 本篇对Power AutoMate的变量功能进行记录与讲解 设置变量 拖拽功能块并赋值 测试一些数据类型 测试中发现与程序中的类型,并没有什么差别 截断数字 对浮点数进行一些操作 选择需要操作的 ...

  6. bzip2: (stdin) is not a bzip2 file.

    用tar -zxvf dir.tar.gz命令解压即可.

  7. 浏览器中的自动化操作插件:Automa

    相信很多小伙伴跟我一样,每天都有大量基于浏览器的重复操作,比如:查看任务.查看新闻.查看各种每天要关注的内容,甚至可能还需要对其做一些操作.那么这些任务是否有办法自动化执行呢? 今天就给大家推荐一个浏 ...

  8. 69.9K Star,最强开源内网穿透工具:frp

    作为一名开发者,有很多场景需要用到内网穿透,比如:我们在接入一些大平台做第三方应用时,在本地开发微信公众号工具的时候需要让微信平台能否访问到本地提供的接口.除此之外,还有很多其他场景,也会用到,比如: ...

  9. openlayers学习笔记

    https://www.cnblogs.com/suRimn/p/10649816.html

  10. [k8s]使用私有harbor镜像源

    前言 在node上手动执行命令可以正常从harbor拉取镜像,但是用k8s不行,使用kubectl describe pods xxx 提示未授权 unauthorized to access rep ...