Description

有一棵点数为 N 的树,以点 1 为根,且树点有边权。然后有 M 个
操作,分为三种:
操作 1 :把某个节点 x 的点权增加 a 。
操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a 。
操作 3 :询问某个节点 x 到根的路径中所有点的点权和。

Input

第一行包含两个整数 N, M 。表示点数和操作数。接下来一行 N 个整数,表示树中节点的初始权值。接下来 N-1 
行每行三个正整数 fr, to , 表示该树中存在一条边 (fr, to) 。再接下来 M 行,每行分别表示一次操作。其中
第一个数表示该操作的种类( 1-3 ) ,之后接这个操作的参数( x 或者 x a ) 。
 

Output

对于每个询问操作,输出该询问的答案。答案之间用换行隔开。

 

Sample Input

5 5
1 2 3 4 5
1 2
1 4
2 3
2 5
3 3
1 2 1
3 5
2 1 2
3 3

Sample Output

6
9
13

HINT

对于 100% 的数据, N,M<=100000 ,且所有输入数据的绝对值都不会超过 10^6 。


题解:

首先看到操作三就能想到树链剖分吧?

再看看题面就能想到线段树维护吧?

然后就没难度了吧?

考虑一下每个操作的做法:

操作1:单点修改,直接在线段树上面修改就好

操作2:把以x为根的子树+a,这是唯一有难度的一个地方。那么想一想我们是怎么剖分这棵树的——两次dfs,也就是说我们的树是按dfs序来构建的,再想想dfs序,它有一个很有趣的性质:

一个子树的编号一定是连续的

证明可以自己去找找。网上有的。

那么当我们想到这个性质之后操作2就不难了,第一次dfs的时候我们已经维护出来一个siz数组表示该节点的子节点了,我们只需要对pos[x],pos[x]+siz[x]-1这个区间进行区间修改就可以了(pos数组是树上的节点在线段树中的编号)

操作3:树链剖分的基本操作,爬到同一条重链上然后区间修改就好了

Code:

#include <cstdio>
#include <cstring>
#define ll long long
#define inf 1<<30
#define il inline
il ll max(ll x,ll y){return x>y?x:y;}
il ll min(ll x,ll y){return x<y?x:y;}
il ll abs(ll x){return x>?x:-x;}
il void swap(ll &x,ll &y){ll t=x;x=y;y=t;}
il void read(ll &x){
x=;ll f=;char c=getchar();
while(c<''||c>''){if(c=='-')f=-f;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
x*=f;
}
il void print(ll x){if(x<)putchar('-');x=abs(x);if(x>)print(x/);putchar(x%+'');}
il void writeln(ll x){if(x<)putchar('-');x=abs(x);print(x);putchar('\n');}
il void write(ll x){if(x<)putchar('-');x=abs(x);print(x);putchar(' ');}
using namespace std;
/*===================Header Template=====================*/
#define N 100010
struct tree{ll l,r,sum,tag;}t[N<<];
struct data{ll to,next;}e[N<<];
ll n,m,root,pos[N],sz;
ll cnt,head[N],v[N],v1[N];
ll fa[N],siz[N],top[N],dep[N];
void insert(ll u,ll v){
e[++cnt].to=v;e[cnt].next=head[u];head[u]=cnt;
e[++cnt].to=u;e[cnt].next=head[v];head[v]=cnt;
}
void dfs1(ll x){
siz[x]=;
for(ll i=head[x];i;i=e[i].next){
if(e[i].to==fa[x])continue;
fa[e[i].to]=x;
dep[e[i].to]=dep[x]+;
dfs1(e[i].to);
siz[x]+=siz[e[i].to];
}
}
void dfs2(ll x,ll topf){
top[x]=topf;
pos[x]=++sz;
v1[sz]=v[x];
ll k=;
for(ll i=head[x];i;i=e[i].next){
if(dep[e[i].to]>dep[x]&&siz[e[i].to]>siz[k])k=e[i].to;
}
if(!k)return;
dfs2(k,topf);
for(ll i=head[x];i;i=e[i].next){
if(k!=e[i].to&&dep[e[i].to]>dep[x])dfs2(e[i].to,e[i].to);
}
}
void build(ll l,ll r,ll rt){
t[rt].l=l;t[rt].r=r;
ll mid=(l+r)>>;
if(l==r){return;}
build(l,mid,rt<<);
build(mid+,r,rt<<|);
t[rt].sum=t[rt<<].sum+t[rt<<|].sum;
}
void pushdown(ll ln,ll rn,ll rt){
if(t[rt].tag){
ll &x=t[rt].tag;
t[rt<<].tag+=x;
t[rt<<|].tag+=x;
t[rt<<].sum+=x*ln;
t[rt<<|].sum+=x*rn;
x=;
}
}
void upd1(ll L,ll c,ll rt){
ll l=t[rt].l,r=t[rt].r,mid=(l+r)>>;
if(l==r){t[rt].sum+=c;return;}
pushdown(mid-l+,r-mid,rt);
if(L<=mid)upd1(L,c,rt<<);
else upd1(L,c,rt<<|);
t[rt].sum=t[rt<<].sum+t[rt<<|].sum;
}
void upd2(ll L,ll R,ll c,ll rt){
ll l=t[rt].l,r=t[rt].r,mid=(l+r)>>;
if(L<=l&&r<=R){t[rt].sum+=(r-l+)*c;t[rt].tag+=c;return;}
pushdown(mid-l+,r-mid,rt);
if(L<=mid)upd2(L,R,c,rt<<);
if(R>mid)upd2(L,R,c,rt<<|);
t[rt].sum=t[rt<<].sum+t[rt<<|].sum;
}
ll query(ll L,ll R,ll rt){
ll l=t[rt].l,r=t[rt].r,mid=(l+r)>>,ans=;
if(L<=l&&r<=R)return t[rt].sum;
pushdown(mid-l+,r-mid,rt);
if(L<=mid)ans+=query(L,R,rt<<);
if(R>mid)ans+=query(L,R,rt<<|);
return ans;
}
ll solve_query(ll x,ll y){
ll sum=;
while(top[x]!=top[y]){
if(dep[top[x]]<dep[top[y]])swap(x,y);
sum+=query(pos[top[x]],pos[x],);
x=fa[top[x]];
}
if(pos[x]>pos[y])swap(x,y);
sum+=query(pos[x],pos[y],);
return sum;
}
int main(){
read(n);read(m);
for(ll i=;i<=n;i++)read(v[i]);
for(ll i=;i<n;i++){
ll x,y;
read(x);read(y);
insert(x,y);
}
dfs1();dfs2(,);
build(,n,);
for(ll i=;i<=n;i++)upd1(pos[i],v[i],);
while(m--){
ll pd,x,y;
read(pd);read(x);
if(pd==){
read(y);
upd1(pos[x],y,);
}else if(pd==){
read(y);
upd2(pos[x],pos[x]+siz[x]-,y,);
}else if(pd==){
writeln(solve_query(x,));
}
}
return ;
}

转载请注明出处:https://www.cnblogs.com/henry-1202/p/9129614.html

[bzoj 4034][HAOI 2015]树上操作的更多相关文章

  1. cogs 1963. [HAOI 2015] 树上操作 树链剖分+线段树

    1963. [HAOI 2015] 树上操作 ★★★☆   输入文件:haoi2015_t2.in   输出文件:haoi2015_t2.out   简单对比时间限制:1 s   内存限制:256 M ...

  2. 洛谷P3178[HAOI]2015 树上操作

    题目 树剖裸题,这个题更可以深刻的理解树剖中把树上的节点转换为区间的思想. 要注意在区间上连续的节点,一定是在一棵子树中. #include <bits/stdc++.h> #define ...

  3. 【BZOJ 4034】[HAOI2015]树上操作 差分+dfs序+树状数组

    我们只要看出来这道题 数组表示的含义就是 某个点到根节点路径权值和就行 那么我们可以把最终答案 看做 k*x+b x就是其深度 ,我们发现dfs序之后,修改一个点是差分一个区间,修改一个点的子树,可以 ...

  4. [HAOI 2015]树上染色

    Description 题库链接 给出一棵 \(n\) 个节点的树,边有权值.让你将树上 \(k\) 个点染黑,剩余 \(n-k\) 个点染白.染色后记一种染色方案的价值为黑点间两两距离和以及白点间两 ...

  5. BZOJ.4034 [HAOI2015]树上操作 ( 点权树链剖分 线段树 )

    BZOJ.4034 [HAOI2015]树上操作 ( 点权树链剖分 线段树 ) 题意分析 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 ...

  6. bzoj 4034: [HAOI2015]树上操作 树链剖分+线段树

    4034: [HAOI2015]树上操作 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4352  Solved: 1387[Submit][Stat ...

  7. bzoj 4034: [HAOI2015]树上操作 (树剖+线段树 子树操作)

    4034: [HAOI2015]树上操作 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 6779  Solved: 2275[Submit][Stat ...

  8. [BZOJ]4034: [HAOI2015]树上操作

    [HAOI2015]树上操作 传送门 题目大意:三个操作 1:a,b,c b节点权值+c 2:a,b,c 以b为根的子树节点权值全部+c 3:a,b 查询b到根路径的权值和. 题解:树链剖分 操作1 ...

  9. [BZOJ 4034] 树上操作

    Link: BZOJ 4034 传送门 Solution: 树剖模板题…… Code: #include <bits/stdc++.h> using namespace std; type ...

随机推荐

  1. 前端-CSS样式

    一.CSS介绍 CSS(Cascading Style Sheet),全称层叠样式,定义如何显示HTML内的元素,浏览器读取HTML文件时,读取到CSS样式时根据CSS规则来对内容进行渲染 1.CSS ...

  2. Block 实践

    OC版 函数中无参无返回值 /* 作为函数参数类型的格式 返回值类型 (^)(形参列表) */ CZPerson.h - (void) test:(void (^)(void))block; CZPe ...

  3. File §2

    Previously speaking,File can be seen as one ducument, also can be seen as list of documents like dir ...

  4. linux常用命令:mv 命令

    mv命令是move的缩写,可以用来移动文件或者将文件改名(move (rename) files),是Linux系统下常用的命令,经常用来备份文件或者目录. 1.命令格式: mv [选项] 源文件或目 ...

  5. Linux基础命令---文本编辑ex

    ex ex会启动vim编辑器,它的执行效果和vim –E相同.从ex模式回到普通模式,可以在vim中输入:vim. 此命令的适用范围:RedHat.RHEL.Ubuntu.CentOS.SUSE.op ...

  6. Markdown编辑器使用说明

    Markdown编辑器使用说明 #编辑器使用说明编辑器仅用来编辑文章的样式,建议在其他文档中写好内容,再复制到此处编辑样式--- ## 编辑器使用介绍—非开发者 非开发者,可以将编辑框内容全部删掉,使 ...

  7. log4j2笔记 #03# PatternLayout

    该类的目标是格式化LogEvent并返回(字符串)结果.结果的格式取决于具体的模式字符串(pattern string).这里的模式字符串与c语言中printf函数的转换模式非常相似.模式字符串由“转 ...

  8. Elasticstarch 相关

    索引: 在Elasticsearch中存储数据的行为就叫做索引(indexing),不过在索引之前,我们需要明确数据应该存储在哪里. 在Elasticsearch中,文档归属于一种类型(type),而 ...

  9. K8S学习笔记之CentOS7集群使用Chrony实现时间同步

    0x00 概述 容器集群对时间同步要求高,实际使用环境中必须确保集群中所有系统时间保持一致,openstack官方也推荐使用chrony代替ntp做时间同步. Chrony是一个开源的自由软件,像Ce ...

  10. django创建app、在视图函数及url中使用参数、url命名、通过redirect实现网页路径跳转

    app用来实现一个独立的功能,视图一般都写在app的view.py中,并且视图的第一个参数永远是request,视图的返回值必须是HttpResponseBase对象或子类的对象. 创建一个app:f ...