Examples of Machine Learning Toolkit Usage

Scikit-learn

KFold K-折交叉验证

>>> import numpy as np
>>> from sklearn.model_selection import KFold >>> X = ["a", "b", "c", "d"]
>>> kf = KFold(n_splits=2)
>>> for train, test in kf.split(X):
... print("%s %s" % (train, test))
[2 3] [0 1]
[0 1] [2 3]

Reference : http://scikit-learn.org/stable/modules/cross_validation.html#k-fold

Decision Trees Classification 决策树分类

>>> from sklearn import tree
>>> X = [[0, 0], [1, 1]]
>>> Y = [0, 1]
>>> clf = tree.DecisionTreeClassifier()
>>> clf = clf.fit(X, Y)
>>> clf.predict([[2., 2.]])
array([1])

Reference : http://scikit-learn.org/stable/modules/tree.html#classification

KNN k近邻

该算法可以用一句成语来帮助理解:近朱者赤近墨者黑。

from sklearn.neighbors import KNeighborsClassifier

knc = KNeighborsClassifier()
knc.fit(X_train, y_train)
y_pred = knc.predict(X_test)

Logistic Regression 逻辑斯蒂回归

>>> from sklearn.linear_model import LogisticRegression
>>> x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.25, random_state=33)
>>> model = LogisticRegression(penalty='l2', random_state=0, solver='newton-cg', multi_class='multinomial')
>>> model = fit(x_train, y_train)
>>> y_pred = model.predict(x_test)

Reference: https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn.linear_model.LogisticRegression

Leave One Out 留一法

>>> from sklearn.model_selection import LeaveOneOut

>>> X = [1, 2, 3, 4]
>>> loo = LeaveOneOut()
>>> for train, test in loo.split(X):
... print("%s %s" % (train, test))
[1 2 3] [0]
[0 2 3] [1]
[0 1 3] [2]
[0 1 2] [3]

Reference : http://scikit-learn.org/stable/modules/cross_validation.html#leave-one-out-loo

train_test_split 随机分割

随机地,将数组或矩阵分割成训练集和测试集

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split iris = load_iris()
x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.25, random_state=33)

参数 test_size

如果是 float,应该在0到1之间,并且代表数据集在列车分割中所包含的比例。

如果是 int,表示训练样本的绝对数量。

如果是 None,则自动将值设置为测试大小的补充。

参数 random_state

如果 int,随机状态是随机数生成器所使用的种子;

如果是 RandomState 实例,随机数是随机数生成器;

如果是 None,随机数生成器是NP-随机使用的随机状态实例。

StandardScaler 特征标准化

标准化数据特征,保证每个维度的特征数据方差为1,均值为0。使得预测结果1不会被某些维度过大的特征而主导

from sklearn.preprocessing import StandardScaler

ss = StandardScaler()
X_train = ss.fit_transform(X_train)
X_test = ss.transform(X_test)

Reference: 《Python机器学习及实践》 https://book.douban.com/subject/26886337

实践

StandardScaler 在鸢尾花(Iris)数据上的表现并不好。未使用 StandardScaler 处理特征时,可以获得:

accuracy 0.947368

avg precision 0.96

avg recall 0.95

f1-score 0.95

代码如下:

# -*- encoding=utf8 -*-

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report if __name__ == '__main__':
iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.25, random_state=33) knc = KNeighborsClassifier()
knc.fit(X_train, y_train)
y_pred = knc.predict(X_test) print("accuracy is %f" % (knc.score(X_test, y_test)))
print(classification_report(y_test, y_pred, target_names=iris.target_names))

使用了 StandardScaler 以后,这四个指标反而下降了,分别如下所示:

accuracy 0.894737

avg precision 0.92

avg recall 0.89

f1-score 0.90

而使用了 StandardScaler 的代码如下:

# -*- encoding=utf8 -*-

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report
from sklearn.preprocessing import StandardScaler if __name__ == '__main__':
iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.25, random_state=33) # 标准化数据特征,保证每个维度的特征数据方差为1,均值为0.
# 使得预测结果1不会被某些维度过大的特征而主导
ss = StandardScaler()
X_train = ss.fit_transform(X_train)
X_test = ss.transform(X_test) knc = KNeighborsClassifier()
knc.fit(X_train, y_train)
y_pred = knc.predict(X_test) print("accuracy is %f" % (knc.score(X_test, y_test)))
print(classification_report(y_test, y_pred, target_names=iris.target_names))

这是一个奇怪的问题,需要今后更进一步的探究。

shuffle 随机打乱

该函数可以随机地打乱训练数据和测试数据(让训练数据和测试数据保持对应)

from sklearn.utils import shuffle

x = [1,2,3,4]
y = [1,2,3,4] x,y = shuffle(x,y)

Out:

x : [1,4,3,2]

y : [1,4,3,2]

Reference : http://scikit-learn.org/stable/modules/generated/sklearn.utils.shuffle.html

Classification Report

Presicion, recall and F1-score.

>>> from sklearn.metrics import classification_report
>>> print(classification_report(y_test, y_pred, target_names=iris.target_names)) precision recall f1-score support setosa 1.00 1.00 1.00 8
versicolor 0.79 1.00 0.88 11
virginica 1.00 0.84 0.91 19 accuracy 0.92 38
macro avg 0.93 0.95 0.93 38
weighted avg 0.94 0.92 0.92 38

reference: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html#sklearn.metrics.classification_report

XGBoost

from xgboost import XGBClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report if __name__ == '__main__':
iris = load_iris()
x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target) xgb = XGBClassifier()
xgb.fit(x_train, y_train)
y_pred = xgb.predict(x_test) print(classification_report(y_test, y_pred))

实验结果

             precision    recall  f1-score   support

          0       1.00      1.00      1.00        14
1 0.93 1.00 0.97 14
2 1.00 0.90 0.95 10 avg / total 0.98 0.97 0.97 38

Examples of Scikit-learn Usages的更多相关文章

  1. scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)

    scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...

  2. (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探

    一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...

  3. (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探

    目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...

  4. Scikit Learn: 在python中机器学习

    转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...

  5. Scikit Learn

    Scikit Learn Scikit-Learn简称sklearn,基于 Python 语言的,简单高效的数据挖掘和数据分析工具,建立在 NumPy,SciPy 和 matplotlib 上.

  6. 机器学习-scikit learn学习笔记

    scikit-learn官网:http://scikit-learn.org/stable/ 通常情况下,一个学习问题会包含一组学习样本数据,计算机通过对样本数据的学习,尝试对未知数据进行预测. 学习 ...

  7. Linear Regression with Scikit Learn

    Before you read  This is a demo or practice about how to use Simple-Linear-Regression in scikit-lear ...

  8. 【359】scikit learn 官方帮助文档

    官方网站链接 sklearn.neighbors.KNeighborsClassifier sklearn.tree.DecisionTreeClassifier sklearn.naive_baye ...

  9. 如何使用scikit—learn处理文本数据

    答案在这里:http://www.tuicool.com/articles/U3uiiu http://scikit-learn.org/stable/modules/feature_extracti ...

  10. Query意图分析:记一次完整的机器学习过程(scikit learn library学习笔记)

    所谓学习问题,是指观察由n个样本组成的集合,并根据这些数据来预测未知数据的性质. 学习任务(一个二分类问题): 区分一个普通的互联网检索Query是否具有某个垂直领域的意图.假设现在有一个O2O领域的 ...

随机推荐

  1. Permission denied: user=root, access=WRITE, inode="/":hadoopuser:supergroup:drwxr-xr-x

    提示往HDFS写文件是不容许的. 在conf/hdfs-site.xml中加入: <property> <name>dfs.permissions</name> & ...

  2. FluentScheduler:开源轻量级定时任务调度架构

    安装:FluentScheduler Install-Package FluentScheduler 一.控制台中使用 using System; using System.Collections.G ...

  3. 独立出properties的mybatis连接池

    jdbc.driver=com.mysql.jdbc.Driver jdbc.url=jdbc:mysql://localhost:3306/java505?useSSL=true&chara ...

  4. D Cloud of Hashtags Codeforces Round #401 (Div. 2)

    Cloud of Hashtags [题目链接]Cloud of Hashtags &题意: 给你一个n,之后给出n个串,这些串的总长度不超过5e5,你要删除最少的单词(并且只能是后缀),使得 ...

  5. caffe-ssd的GPU安装时make runtest报错: BatchReindexLayerTest/3.TestGradient, where TypeParam = caffe::GPUDevice<double>

    报错原因:装了两个cuda,BatchReindexLayerTest/3.TestGradient不能确定用那个 解决办法1:删除其中一个(最好删除9.1,TensorFlow支持的是9.0,为了后 ...

  6. Keras 处理 不平衡的数据的分类问题 imbalance data 或者 highly skewed data

    处理不平衡的数据集的时候,可以使用对数据加权来提高数量较小类的被选中的概率,具体方式如下 fit(self, x, y, batch_size=32, nb_epoch=10, verbose=1, ...

  7. 【Hadoop学习之四】HDFS HA搭建(QJM)

    环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk8 hadoop-3.1.1 由于NameNode对于整个HDF ...

  8. dict['source'] = list[1],出现这种情况大多是数据的格式发生错误

    修改数据的格式

  9. 设计模式之Proxy(代理)(转)

    理解并使用设计模式,能够培养我们良好的面向对象编程习惯,同时在实际应用中,可以如鱼得水,享受游刃有余的乐趣. Proxy是比较有用途的一种模式,而且变种较多,应用场合覆盖从小结构到整个系统的大结构,P ...

  10. javamail邮件Multipart支持同时发text和html混合消息,alternative纯文本与超文本共存

    javamail邮件Multipart支持同时发text和html混合消息alternative纯文本与超文本共存 multipart/mixed:附件. multipart/related:内嵌资源 ...