Examples of Scikit-learn Usages
Examples of Machine Learning Toolkit Usage
Scikit-learn
KFold K-折交叉验证
>>> import numpy as np
>>> from sklearn.model_selection import KFold
>>> X = ["a", "b", "c", "d"]
>>> kf = KFold(n_splits=2)
>>> for train, test in kf.split(X):
... print("%s %s" % (train, test))
[2 3] [0 1]
[0 1] [2 3]
Reference : http://scikit-learn.org/stable/modules/cross_validation.html#k-fold
Decision Trees Classification 决策树分类
>>> from sklearn import tree
>>> X = [[0, 0], [1, 1]]
>>> Y = [0, 1]
>>> clf = tree.DecisionTreeClassifier()
>>> clf = clf.fit(X, Y)
>>> clf.predict([[2., 2.]])
array([1])
Reference : http://scikit-learn.org/stable/modules/tree.html#classification
KNN k近邻
该算法可以用一句成语来帮助理解:近朱者赤近墨者黑。
from sklearn.neighbors import KNeighborsClassifier
knc = KNeighborsClassifier()
knc.fit(X_train, y_train)
y_pred = knc.predict(X_test)
Logistic Regression 逻辑斯蒂回归
>>> from sklearn.linear_model import LogisticRegression
>>> x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.25, random_state=33)
>>> model = LogisticRegression(penalty='l2', random_state=0, solver='newton-cg', multi_class='multinomial')
>>> model = fit(x_train, y_train)
>>> y_pred = model.predict(x_test)
Leave One Out 留一法
>>> from sklearn.model_selection import LeaveOneOut
>>> X = [1, 2, 3, 4]
>>> loo = LeaveOneOut()
>>> for train, test in loo.split(X):
... print("%s %s" % (train, test))
[1 2 3] [0]
[0 2 3] [1]
[0 1 3] [2]
[0 1 2] [3]
Reference : http://scikit-learn.org/stable/modules/cross_validation.html#leave-one-out-loo
train_test_split 随机分割
随机地,将数组或矩阵分割成训练集和测试集
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
iris = load_iris()
x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.25, random_state=33)
参数 test_size
如果是 float,应该在0到1之间,并且代表数据集在列车分割中所包含的比例。
如果是 int,表示训练样本的绝对数量。
如果是 None,则自动将值设置为测试大小的补充。
参数 random_state
如果 int,随机状态是随机数生成器所使用的种子;
如果是 RandomState 实例,随机数是随机数生成器;
如果是 None,随机数生成器是NP-随机使用的随机状态实例。
StandardScaler 特征标准化
标准化数据特征,保证每个维度的特征数据方差为1,均值为0。使得预测结果1不会被某些维度过大的特征而主导
from sklearn.preprocessing import StandardScaler
ss = StandardScaler()
X_train = ss.fit_transform(X_train)
X_test = ss.transform(X_test)
Reference: 《Python机器学习及实践》 https://book.douban.com/subject/26886337
实践
StandardScaler 在鸢尾花(Iris)数据上的表现并不好。未使用 StandardScaler 处理特征时,可以获得:
accuracy 0.947368
avg precision 0.96
avg recall 0.95
f1-score 0.95
代码如下:
# -*- encoding=utf8 -*-
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report
if __name__ == '__main__':
iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.25, random_state=33)
knc = KNeighborsClassifier()
knc.fit(X_train, y_train)
y_pred = knc.predict(X_test)
print("accuracy is %f" % (knc.score(X_test, y_test)))
print(classification_report(y_test, y_pred, target_names=iris.target_names))
使用了 StandardScaler 以后,这四个指标反而下降了,分别如下所示:
accuracy 0.894737
avg precision 0.92
avg recall 0.89
f1-score 0.90
而使用了 StandardScaler 的代码如下:
# -*- encoding=utf8 -*-
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report
from sklearn.preprocessing import StandardScaler
if __name__ == '__main__':
iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.25, random_state=33)
# 标准化数据特征,保证每个维度的特征数据方差为1,均值为0.
# 使得预测结果1不会被某些维度过大的特征而主导
ss = StandardScaler()
X_train = ss.fit_transform(X_train)
X_test = ss.transform(X_test)
knc = KNeighborsClassifier()
knc.fit(X_train, y_train)
y_pred = knc.predict(X_test)
print("accuracy is %f" % (knc.score(X_test, y_test)))
print(classification_report(y_test, y_pred, target_names=iris.target_names))
这是一个奇怪的问题,需要今后更进一步的探究。
shuffle 随机打乱
该函数可以随机地打乱训练数据和测试数据(让训练数据和测试数据保持对应)
from sklearn.utils import shuffle
x = [1,2,3,4]
y = [1,2,3,4]
x,y = shuffle(x,y)
Out:
x : [1,4,3,2]
y : [1,4,3,2]
Reference : http://scikit-learn.org/stable/modules/generated/sklearn.utils.shuffle.html
Classification Report
Presicion, recall and F1-score.
>>> from sklearn.metrics import classification_report
>>> print(classification_report(y_test, y_pred, target_names=iris.target_names))
precision recall f1-score support
setosa 1.00 1.00 1.00 8
versicolor 0.79 1.00 0.88 11
virginica 1.00 0.84 0.91 19
accuracy 0.92 38
macro avg 0.93 0.95 0.93 38
weighted avg 0.94 0.92 0.92 38
XGBoost
from xgboost import XGBClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
if __name__ == '__main__':
iris = load_iris()
x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target)
xgb = XGBClassifier()
xgb.fit(x_train, y_train)
y_pred = xgb.predict(x_test)
print(classification_report(y_test, y_pred))
实验结果
precision recall f1-score support
0 1.00 1.00 1.00 14
1 0.93 1.00 0.97 14
2 1.00 0.90 0.95 10
avg / total 0.98 0.97 0.97 38
Examples of Scikit-learn Usages的更多相关文章
- scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)
scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...
- (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...
- (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...
- Scikit Learn: 在python中机器学习
转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...
- Scikit Learn
Scikit Learn Scikit-Learn简称sklearn,基于 Python 语言的,简单高效的数据挖掘和数据分析工具,建立在 NumPy,SciPy 和 matplotlib 上.
- 机器学习-scikit learn学习笔记
scikit-learn官网:http://scikit-learn.org/stable/ 通常情况下,一个学习问题会包含一组学习样本数据,计算机通过对样本数据的学习,尝试对未知数据进行预测. 学习 ...
- Linear Regression with Scikit Learn
Before you read This is a demo or practice about how to use Simple-Linear-Regression in scikit-lear ...
- 【359】scikit learn 官方帮助文档
官方网站链接 sklearn.neighbors.KNeighborsClassifier sklearn.tree.DecisionTreeClassifier sklearn.naive_baye ...
- 如何使用scikit—learn处理文本数据
答案在这里:http://www.tuicool.com/articles/U3uiiu http://scikit-learn.org/stable/modules/feature_extracti ...
- Query意图分析:记一次完整的机器学习过程(scikit learn library学习笔记)
所谓学习问题,是指观察由n个样本组成的集合,并根据这些数据来预测未知数据的性质. 学习任务(一个二分类问题): 区分一个普通的互联网检索Query是否具有某个垂直领域的意图.假设现在有一个O2O领域的 ...
随机推荐
- Ubuntu16.04源的问题
今天执行下列语句 sudo apt-get update报错 安装redis时 sudo apt-get install redis-server报错 报错内容大致如下: 在网上查了一下是源的问题,我 ...
- iOS 新浪微博-5.0 首页微博列表
首页显示微博列表,是微博的核心部分,这一章节,我们主要是显示出微博的列表. 导入第三方类库 pod 'SDWebImage', '~> 3.7.3' pod 'MJRefresh', '~> ...
- Linux基础(四)网络设置
环境: linux系统版本为:CentOS 7 虚拟机:vm12 共享本地计算机网络,达到我们linux系统上网的目的 虚拟机,添加网卡-设置 设置成,自定义vmnet8 NAT模式即可,不需要添加什 ...
- xml--myeclipse用快捷键注释xml语句
7.5以上版本才可以ctrl+shift+/ 撤销注释:CTRL + SHIFT + \ 参考:https://blog.csdn.net/tengdazhang770960436/article/d ...
- PyQT5速成教程-4 Qt Designer实战[上]
本文由 沈庆阳 所有,转载请与作者取得联系! 前言 在前面几节的学习中,我们对PyQt的基本使用.Qt Designer与Python编码的工作流程有了基本的学习.同时也掌握了Qt Designer中 ...
- shell编程:if语句
条件判断式的两边的空格不能生
- cookie和session必须了解的东西
Cookie的机制 Cookie是浏览器(User Agent)访问一些网站后,这些网站存放在客户端的一组数据,用于使网站等跟踪用户,实现用户自定义功能. Cookie的Domain和Path属性标识 ...
- 强力上攻后,缓解期结束,MACD死叉的案例
eg1.顶部,MACD收紧,缓解期刚过,正好下M5,触发减仓条件
- 从0开始搭建vue+webpack脚手架(一)
基于多数情况下都是使用vue-cli初始化项目, 却始终未去了解其原理.从零开始搭建,可以让自己更深层次的理解框架. 首先从最基本的npm 开始, 至于安装npm 和 node就不用再赘述了,那是前端 ...
- .net中ashx文件有什么用?功能有那些,一般用在什么情况下?
.ashx是“一般处理文件”.和aspx类似.但是这种文件要比aspx这种前台页面文件内容简单轻巧..ashx不提供前台展示的功能.也可以说它结合了.cs类文件而且又可以提供给.aspx文件做UI层的 ...