扩展BSGS算法
求解A^x ≡ B mod P (P不一定是质数)的最小非负正整数解
先放几个同余定理:
一、判断如果B==1,那么x=0,算法结束
二、若gcd(A,P)不能整除 B,则 无解,算法结束
三、若gcd(A,P)!=1,令d=gcd(A,P),若d不能整除B,则无解,算法结束。
有
四、持续步骤三,直至 gcd(A,)=1
有
五、枚举 0<x<k,若有解,输出x,算法结束
六、对于x>=k,
A=,B=
,P=
A,P 互素 ,
直接用BSGS 求 * A ^ x ≡ B mod P
所得结果再+k即可
#include<map>
#include<cmath>
#include<cstdio>
#include<iostream>
#include<algorithm> using namespace std; typedef long long LL; map<int,int>mp; void read(int &x)
{
x=; char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) { x=x*+c-''; c=getchar(); }
} int get_gcd(int a,int b) { return !b ? a : get_gcd(b,a%b); } int Pow(int a,int b,int mod)
{
int res=;
for(;b;a=1LL*a*a%mod,b>>=)
if(b&) res=1LL*res*a%mod;
return res;
} int ex_BSGS(int A,int B,int C)
{
if(B==) return ;
int k=,tmp=,d;
while()
{
d=get_gcd(A,C);
if(d==) break;
if(B%d) return -;
B/=d; C/=d;
tmp=1LL*tmp*(A/d)%C;
k++;
if(tmp==B) return k;
}
mp.clear();
int mul=B;
mp[B]=;
int m=ceil(sqrt(1.0*C));
for(int j=;j<=m;++j)
{
mul=1LL*mul*A%C;
mp[mul]=j;
}
int am=Pow(A,m,C);
mul=tmp;
for(int j=;j<=m;++j)
{
mul=1LL*mul*am%C;
if(mp.count(mul)) return j*m-mp[mul]+k;
}
return -;
} int main()
{
int A,C,B;
int ans;
while()
{
read(A); read(B); read(C);
if(!A) return ;
ans=ex_BSGS(A,B,C);
if(ans==-) puts("No Solution");
else cout<<ans<<'\n';
}
}
扩展BSGS算法的更多相关文章
- BSGS及扩展BSGS算法及例题
\(BSGS(baby-step-giant-step)\)算法是用来解高次同余方程的最小非负整数解的算法,即形如这个的方程: \(a^x\equiv b(mod\ p)\) 其中\(p\)为质数(其 ...
- BSGS算法学习笔记
从这里开始 离散对数和BSGS算法 扩展BSGS算法 离散对数和BSGS算法 设$x$是最小的非负整数使得$a^{x}\equiv b\ \ \ \pmod{m}$,则$x$是$b$以$a$为底的离散 ...
- BSGS算法及扩展
BSGS算法 \(Baby Step Giant Step\)算法,即大步小步算法,缩写为\(BSGS\) 拔山盖世算法 它是用来解决这样一类问题 \(y^x = z (mod\ p)\),给定\(y ...
- BSGS算法及其扩展
bsgs算法: 我们在逆元里曾经讲到过如何用殴几里得求一个同余方程的整数解.而\(bsgs\)就是用来求一个指数同余方程的最小整数解的:也就是对于\(a^x\equiv b \mod p\) 我们可以 ...
- BSGS算法_Baby steps giant steps算法(无扩展)详解
Baby Steps-Varsity Giant Step-Astronauts(May'n・椎名慶治) 阅读时可以听听这两首歌,加深对这个算法的理解.(Baby steps少女时代翻唱过,这个原唱反 ...
- 【数论】【快速幂】【扩展欧几里得】【BSGS算法】bzoj2242 [SDOI2011]计算器
说是BSGS……但是跟前面那题的扩展BSGS其实是一样的……因为模数虽然是质数,但是其可能可以整除a!!所以这两者其实是一样的…… 第一二种操作不赘述. #include<cstdio> ...
- BSGS与扩展BSGS
BSGS \(BSGS\)算法又称大步小步\((Baby-Step-Giant-Step)\)算法 \(BSGS\)算法主要用于解以下同余方程 \[A^x\equiv B(mod\ p)\]其中\(( ...
- BSGS算法总结
BSGS算法总结 \(BSGS\)算法(Baby Step Giant Step),即大步小步算法,用于解决这样一个问题: 求\(y^x\equiv z\ (mod\ p)\)的最小正整数解. 前提条 ...
- BSGS和扩展BSGS
BSGS: 求合法的\(x\)使得\(a ^ x \quad mod \quad p = b\) 先暴力预处理出\(a^0,a^1,a^2.....a^{\sqrt{p}}\) 然后把这些都存在map ...
随机推荐
- JavaSE回顾及巩固的自学之路(四)——————方法和数组,面向对象
今天是2018.03.31,emmmmmm.好像距离上一次写Javase回顾总结已经好久好久过去,差一点就以为要停更了,哈哈哈. 其实呢,最近是真的好忙(额,这段时间觉得自己一直在学习) ...
- 【逆向工具】使用x64dbg+spy去除WinRAR5.40(64位)广告弹框
1 学习目标 WinRAR5.40(64位)的弹框广告去除,由于我的系统为x64版本,所以安装了WinRAR(x64)版本. OD无法调试64位的程序,可以让我熟悉x64dbg进行调试的界面. 其次是 ...
- 【转】Python数据类型之“序列概述与基本序列类型(Basic Sequences)”
[转]Python数据类型之“序列概述与基本序列类型(Basic Sequences)” 序列是指有序的队列,重点在"有序". 一.Python中序列的分类 Python中的序列主 ...
- ARMV8 datasheet学习笔记3:AArch64应用级体系结构之Synchronization and semapores
1.前言 本文主要介绍原子变量的实现原理,对原子变量的修改有一套特殊的机制 2. Local monitor和Global monitor UP时执行Load EX和Store EX时仅需关注Loca ...
- find结合rm删除或mv移动文件的方法
删除过期的备份文件,多用find结合rm方法,可以使用-exec或xargs -exec rm -rf {} \; 或 find /home/mysqlbackup -name "*$thi ...
- insmod 时报错“Unknown symbol”问题的解决
在加载驱动模块时报错: “ Unknown symbol CFG80211_SupBandReInit (err 0)” 查看了内核代码以及加载上的symbol(命令为 cat /proc/kalls ...
- Android app 在线更新那点事儿(适配Android6.0、7.0、8.0)
一.前言 app在线更新是一个比较常见需求,新版本发布时,用户进入我们的app,就会弹出更新提示框,第一时间更新新版本app.在线更新分为以下几个步骤: 1, 通过接口获取线上版本号,versionC ...
- linux 创建用户和密码
:useradd -m 用户名//添加用户 :passwd 用户名 //然后设置密码 :userdel -r newuser1 //删除用户 newuser1,同时删除其自家目录 samba 设置账号 ...
- php三种无限分类
无限分类,是指从一个最高分类开始,每个子分类都可以分出自己的若干个子分类,可以一直分下去,称为无限级分类: 下面是对省市县的无限极分类的列子.数据库如图: 代码示例如下: /** * @Descrip ...
- poj2342 没有上司的舞会 树形dp基础
#include<iostream> #include<cstring> #include<cstdio> #include<vector> using ...