扩展BSGS算法
求解A^x ≡ B mod P (P不一定是质数)的最小非负正整数解
先放几个同余定理:



一、判断如果B==1,那么x=0,算法结束
二、若gcd(A,P)不能整除 B,则 无解,算法结束
三、若gcd(A,P)!=1,令d=gcd(A,P),若d不能整除B,则无解,算法结束。
有
四、持续步骤三,直至 gcd(A,
)=1
有 
五、枚举 0<x<k,若有解,输出x,算法结束
六、对于x>=k,
A=
,B=
,P=
A,P 互素 ,
直接用BSGS 求
* A ^ x ≡ B mod P
所得结果再+k即可
#include<map>
#include<cmath>
#include<cstdio>
#include<iostream>
#include<algorithm> using namespace std; typedef long long LL; map<int,int>mp; void read(int &x)
{
x=; char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) { x=x*+c-''; c=getchar(); }
} int get_gcd(int a,int b) { return !b ? a : get_gcd(b,a%b); } int Pow(int a,int b,int mod)
{
int res=;
for(;b;a=1LL*a*a%mod,b>>=)
if(b&) res=1LL*res*a%mod;
return res;
} int ex_BSGS(int A,int B,int C)
{
if(B==) return ;
int k=,tmp=,d;
while()
{
d=get_gcd(A,C);
if(d==) break;
if(B%d) return -;
B/=d; C/=d;
tmp=1LL*tmp*(A/d)%C;
k++;
if(tmp==B) return k;
}
mp.clear();
int mul=B;
mp[B]=;
int m=ceil(sqrt(1.0*C));
for(int j=;j<=m;++j)
{
mul=1LL*mul*A%C;
mp[mul]=j;
}
int am=Pow(A,m,C);
mul=tmp;
for(int j=;j<=m;++j)
{
mul=1LL*mul*am%C;
if(mp.count(mul)) return j*m-mp[mul]+k;
}
return -;
} int main()
{
int A,C,B;
int ans;
while()
{
read(A); read(B); read(C);
if(!A) return ;
ans=ex_BSGS(A,B,C);
if(ans==-) puts("No Solution");
else cout<<ans<<'\n';
}
}
扩展BSGS算法的更多相关文章
- BSGS及扩展BSGS算法及例题
\(BSGS(baby-step-giant-step)\)算法是用来解高次同余方程的最小非负整数解的算法,即形如这个的方程: \(a^x\equiv b(mod\ p)\) 其中\(p\)为质数(其 ...
- BSGS算法学习笔记
从这里开始 离散对数和BSGS算法 扩展BSGS算法 离散对数和BSGS算法 设$x$是最小的非负整数使得$a^{x}\equiv b\ \ \ \pmod{m}$,则$x$是$b$以$a$为底的离散 ...
- BSGS算法及扩展
BSGS算法 \(Baby Step Giant Step\)算法,即大步小步算法,缩写为\(BSGS\) 拔山盖世算法 它是用来解决这样一类问题 \(y^x = z (mod\ p)\),给定\(y ...
- BSGS算法及其扩展
bsgs算法: 我们在逆元里曾经讲到过如何用殴几里得求一个同余方程的整数解.而\(bsgs\)就是用来求一个指数同余方程的最小整数解的:也就是对于\(a^x\equiv b \mod p\) 我们可以 ...
- BSGS算法_Baby steps giant steps算法(无扩展)详解
Baby Steps-Varsity Giant Step-Astronauts(May'n・椎名慶治) 阅读时可以听听这两首歌,加深对这个算法的理解.(Baby steps少女时代翻唱过,这个原唱反 ...
- 【数论】【快速幂】【扩展欧几里得】【BSGS算法】bzoj2242 [SDOI2011]计算器
说是BSGS……但是跟前面那题的扩展BSGS其实是一样的……因为模数虽然是质数,但是其可能可以整除a!!所以这两者其实是一样的…… 第一二种操作不赘述. #include<cstdio> ...
- BSGS与扩展BSGS
BSGS \(BSGS\)算法又称大步小步\((Baby-Step-Giant-Step)\)算法 \(BSGS\)算法主要用于解以下同余方程 \[A^x\equiv B(mod\ p)\]其中\(( ...
- BSGS算法总结
BSGS算法总结 \(BSGS\)算法(Baby Step Giant Step),即大步小步算法,用于解决这样一个问题: 求\(y^x\equiv z\ (mod\ p)\)的最小正整数解. 前提条 ...
- BSGS和扩展BSGS
BSGS: 求合法的\(x\)使得\(a ^ x \quad mod \quad p = b\) 先暴力预处理出\(a^0,a^1,a^2.....a^{\sqrt{p}}\) 然后把这些都存在map ...
随机推荐
- CodeForces - 907A Masha and Bears
A. Masha and Bears time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
- python 内建函数专题
all 用来控制 import , 甚至可以改变 _private 为 public enter , exit 用于上下文管理器 iter 用于迭代器 repr 给计算机读, str ==> s ...
- Nginx管理脚本
#!/bin/bash # chkconfig: # description: Start/Stop Nginx server path=/application/nginx/sbin pid=/ap ...
- linux系统--磁盘管理命令(一)
一.基本命令 1.1 查看磁盘分区使用状况:df 参数: l:仅显示本地磁盘(默认) a:显示所有文件系统的磁盘使用情况,包括比如 /proc/ h:以1024进制计算最合适的单位显示磁盘容量 H:以 ...
- Nginx URL匹配
Nginx 下 location模块 可以实现对网页URL进行分析处理 location ~ .*\.(gif|jpg|jpeg|png|bmg|swf)$ { // 扩展名为gif|jpg|j ...
- [C++]指针与多级指针(图解)
声明:如需引用或者摘抄本博文源码或者其文章的,请在显著处注明,来源于本博文/作者,以示尊重劳动成果,助力开源精神.也欢迎大家一起探讨,交流,以共同进步- 0.0 演示: /* @author:John ...
- python - 远程主机执行命令练习(socket UDP + subprocess.Popen()) 练习1
环境是windows 环境. server端: import socket import subprocess ss = socket.socket(socket.AF_INET,socket.SOC ...
- Remaiten-一个以路由器和IoT设备为目标的Linux bot
Remaiten-一个以路由器和IoT设备为目标的Linux bot ESET的研究人员正在积极地检测以嵌入式系统为攻击目标的木马,受影响的有路由器,网关和无线访问点.近期,我们已经发现了一个相关的b ...
- python实现监控windows服务控制开关服务
转载自 :http://www.jb51.net/article/49106.htm #!/usr/bin/env python #-*- encoding:utf-8 -*- "" ...
- MyEclipse中将项目的编码从默认GBK改变为默认UTF-8