扩展BSGS算法
求解A^x ≡ B mod P (P不一定是质数)的最小非负正整数解
先放几个同余定理:
一、判断如果B==1,那么x=0,算法结束
二、若gcd(A,P)不能整除 B,则 无解,算法结束
三、若gcd(A,P)!=1,令d=gcd(A,P),若d不能整除B,则无解,算法结束。
有
四、持续步骤三,直至 gcd(A,)=1
有
五、枚举 0<x<k,若有解,输出x,算法结束
六、对于x>=k,
A=,B=
,P=
A,P 互素 ,
直接用BSGS 求 * A ^ x ≡ B mod P
所得结果再+k即可
#include<map>
#include<cmath>
#include<cstdio>
#include<iostream>
#include<algorithm> using namespace std; typedef long long LL; map<int,int>mp; void read(int &x)
{
x=; char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) { x=x*+c-''; c=getchar(); }
} int get_gcd(int a,int b) { return !b ? a : get_gcd(b,a%b); } int Pow(int a,int b,int mod)
{
int res=;
for(;b;a=1LL*a*a%mod,b>>=)
if(b&) res=1LL*res*a%mod;
return res;
} int ex_BSGS(int A,int B,int C)
{
if(B==) return ;
int k=,tmp=,d;
while()
{
d=get_gcd(A,C);
if(d==) break;
if(B%d) return -;
B/=d; C/=d;
tmp=1LL*tmp*(A/d)%C;
k++;
if(tmp==B) return k;
}
mp.clear();
int mul=B;
mp[B]=;
int m=ceil(sqrt(1.0*C));
for(int j=;j<=m;++j)
{
mul=1LL*mul*A%C;
mp[mul]=j;
}
int am=Pow(A,m,C);
mul=tmp;
for(int j=;j<=m;++j)
{
mul=1LL*mul*am%C;
if(mp.count(mul)) return j*m-mp[mul]+k;
}
return -;
} int main()
{
int A,C,B;
int ans;
while()
{
read(A); read(B); read(C);
if(!A) return ;
ans=ex_BSGS(A,B,C);
if(ans==-) puts("No Solution");
else cout<<ans<<'\n';
}
}
扩展BSGS算法的更多相关文章
- BSGS及扩展BSGS算法及例题
\(BSGS(baby-step-giant-step)\)算法是用来解高次同余方程的最小非负整数解的算法,即形如这个的方程: \(a^x\equiv b(mod\ p)\) 其中\(p\)为质数(其 ...
- BSGS算法学习笔记
从这里开始 离散对数和BSGS算法 扩展BSGS算法 离散对数和BSGS算法 设$x$是最小的非负整数使得$a^{x}\equiv b\ \ \ \pmod{m}$,则$x$是$b$以$a$为底的离散 ...
- BSGS算法及扩展
BSGS算法 \(Baby Step Giant Step\)算法,即大步小步算法,缩写为\(BSGS\) 拔山盖世算法 它是用来解决这样一类问题 \(y^x = z (mod\ p)\),给定\(y ...
- BSGS算法及其扩展
bsgs算法: 我们在逆元里曾经讲到过如何用殴几里得求一个同余方程的整数解.而\(bsgs\)就是用来求一个指数同余方程的最小整数解的:也就是对于\(a^x\equiv b \mod p\) 我们可以 ...
- BSGS算法_Baby steps giant steps算法(无扩展)详解
Baby Steps-Varsity Giant Step-Astronauts(May'n・椎名慶治) 阅读时可以听听这两首歌,加深对这个算法的理解.(Baby steps少女时代翻唱过,这个原唱反 ...
- 【数论】【快速幂】【扩展欧几里得】【BSGS算法】bzoj2242 [SDOI2011]计算器
说是BSGS……但是跟前面那题的扩展BSGS其实是一样的……因为模数虽然是质数,但是其可能可以整除a!!所以这两者其实是一样的…… 第一二种操作不赘述. #include<cstdio> ...
- BSGS与扩展BSGS
BSGS \(BSGS\)算法又称大步小步\((Baby-Step-Giant-Step)\)算法 \(BSGS\)算法主要用于解以下同余方程 \[A^x\equiv B(mod\ p)\]其中\(( ...
- BSGS算法总结
BSGS算法总结 \(BSGS\)算法(Baby Step Giant Step),即大步小步算法,用于解决这样一个问题: 求\(y^x\equiv z\ (mod\ p)\)的最小正整数解. 前提条 ...
- BSGS和扩展BSGS
BSGS: 求合法的\(x\)使得\(a ^ x \quad mod \quad p = b\) 先暴力预处理出\(a^0,a^1,a^2.....a^{\sqrt{p}}\) 然后把这些都存在map ...
随机推荐
- Ant基础知识1
1.Ant简介 Apache Ant是一个将软件编译/测试/部署等步骤联系在一起加以优化的一个构建工具,常用于java环境中的软件开发.Ant的默认配置文件是build.xml. 对java语言的支持 ...
- PHP7 学习笔记(四)PHP PSR-4 Autoloader 自动加载
参考文献: 1.PHP PSR-4 Autoloader 自动加载(中文版) 2.PHP编码规范(中文版)导读 3.PHP-PSR-[0-4]代码规范 基本步骤: (1)在vendor 下新建一个项目 ...
- 通过read()读文件
一.在POSIX中的定义 #include <unistd.h> ssize_t read(int fd, void *buf, size_t len); 二.调用read()的可能结果 ...
- VxWorks Fuzzing 之道:VxWorks 工控实时操作系统漏洞挖掘调试与利用揭秘
转载:freebuf 0×00 前言 关于VxWorks,这里引用44CON议题<攻击 VxWorks:从石器时代到星际>探究 一文章中的介绍: VxWorks 是世界上使用最广泛的一种在 ...
- day3 进入指定目录:cd
想进入指定目录使用cd cd 目录名 进入指定目录 进入系统根目录:cd / 回退命令:cd .. 或者 cd ../ 或者 cd ..// 进入当前用户的主目录:cd 或者 cd ~ 跳转指定目录: ...
- java删除文件及其目录
1.删除指定文件路径 public @ResponseBody String deleteFiles(HttpServletRequest request) { log.info(this.getCl ...
- Properties文件工具类的使用--获取所有的键值、删除键、更新键等操作
有时候我们希望处理properties文件,properties文件是键值对的文件形式,我们可以借助Properties类操作. 工具类如下:(代码中日志采用了slf4j日志) package cn. ...
- Freemarker导出带格式的word的使用
1.新建一个doc文档
- DataSnap ClientdataSet 三层中主从表的操作
非原创 摘自:http://hi.baidu.com/yagzh2000/blog/item/fc69df2cb9845de78b139946.html三层中主从表的操作(删除.新增.修改)一定要在 ...
- @Html.Action()
背景 在这里主要想谈下mvc,最初几年都是用的webform,作为一个资深傻瓜程序员多年,后来到处听说mvc,终于在某天下定决心实验下mvc,其实关键还是在于easyui,因为它的请求数据方式和mvc ...