扩展BSGS算法
求解A^x ≡ B mod P (P不一定是质数)的最小非负正整数解
先放几个同余定理:



一、判断如果B==1,那么x=0,算法结束
二、若gcd(A,P)不能整除 B,则 无解,算法结束
三、若gcd(A,P)!=1,令d=gcd(A,P),若d不能整除B,则无解,算法结束。
有
四、持续步骤三,直至 gcd(A,
)=1
有 
五、枚举 0<x<k,若有解,输出x,算法结束
六、对于x>=k,
A=
,B=
,P=
A,P 互素 ,
直接用BSGS 求
* A ^ x ≡ B mod P
所得结果再+k即可
#include<map>
#include<cmath>
#include<cstdio>
#include<iostream>
#include<algorithm> using namespace std; typedef long long LL; map<int,int>mp; void read(int &x)
{
x=; char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) { x=x*+c-''; c=getchar(); }
} int get_gcd(int a,int b) { return !b ? a : get_gcd(b,a%b); } int Pow(int a,int b,int mod)
{
int res=;
for(;b;a=1LL*a*a%mod,b>>=)
if(b&) res=1LL*res*a%mod;
return res;
} int ex_BSGS(int A,int B,int C)
{
if(B==) return ;
int k=,tmp=,d;
while()
{
d=get_gcd(A,C);
if(d==) break;
if(B%d) return -;
B/=d; C/=d;
tmp=1LL*tmp*(A/d)%C;
k++;
if(tmp==B) return k;
}
mp.clear();
int mul=B;
mp[B]=;
int m=ceil(sqrt(1.0*C));
for(int j=;j<=m;++j)
{
mul=1LL*mul*A%C;
mp[mul]=j;
}
int am=Pow(A,m,C);
mul=tmp;
for(int j=;j<=m;++j)
{
mul=1LL*mul*am%C;
if(mp.count(mul)) return j*m-mp[mul]+k;
}
return -;
} int main()
{
int A,C,B;
int ans;
while()
{
read(A); read(B); read(C);
if(!A) return ;
ans=ex_BSGS(A,B,C);
if(ans==-) puts("No Solution");
else cout<<ans<<'\n';
}
}
扩展BSGS算法的更多相关文章
- BSGS及扩展BSGS算法及例题
\(BSGS(baby-step-giant-step)\)算法是用来解高次同余方程的最小非负整数解的算法,即形如这个的方程: \(a^x\equiv b(mod\ p)\) 其中\(p\)为质数(其 ...
- BSGS算法学习笔记
从这里开始 离散对数和BSGS算法 扩展BSGS算法 离散对数和BSGS算法 设$x$是最小的非负整数使得$a^{x}\equiv b\ \ \ \pmod{m}$,则$x$是$b$以$a$为底的离散 ...
- BSGS算法及扩展
BSGS算法 \(Baby Step Giant Step\)算法,即大步小步算法,缩写为\(BSGS\) 拔山盖世算法 它是用来解决这样一类问题 \(y^x = z (mod\ p)\),给定\(y ...
- BSGS算法及其扩展
bsgs算法: 我们在逆元里曾经讲到过如何用殴几里得求一个同余方程的整数解.而\(bsgs\)就是用来求一个指数同余方程的最小整数解的:也就是对于\(a^x\equiv b \mod p\) 我们可以 ...
- BSGS算法_Baby steps giant steps算法(无扩展)详解
Baby Steps-Varsity Giant Step-Astronauts(May'n・椎名慶治) 阅读时可以听听这两首歌,加深对这个算法的理解.(Baby steps少女时代翻唱过,这个原唱反 ...
- 【数论】【快速幂】【扩展欧几里得】【BSGS算法】bzoj2242 [SDOI2011]计算器
说是BSGS……但是跟前面那题的扩展BSGS其实是一样的……因为模数虽然是质数,但是其可能可以整除a!!所以这两者其实是一样的…… 第一二种操作不赘述. #include<cstdio> ...
- BSGS与扩展BSGS
BSGS \(BSGS\)算法又称大步小步\((Baby-Step-Giant-Step)\)算法 \(BSGS\)算法主要用于解以下同余方程 \[A^x\equiv B(mod\ p)\]其中\(( ...
- BSGS算法总结
BSGS算法总结 \(BSGS\)算法(Baby Step Giant Step),即大步小步算法,用于解决这样一个问题: 求\(y^x\equiv z\ (mod\ p)\)的最小正整数解. 前提条 ...
- BSGS和扩展BSGS
BSGS: 求合法的\(x\)使得\(a ^ x \quad mod \quad p = b\) 先暴力预处理出\(a^0,a^1,a^2.....a^{\sqrt{p}}\) 然后把这些都存在map ...
随机推荐
- ZOJ 4019 Schrödinger's Knapsack
Schrödinger's Knapsack Time Limit: 1 Second Memory Limit: 65536 KB DreamGrid has a magical knap ...
- 从面向对象的角度重新认识JS世界
一. 背景 距离上一篇JS文章已经20天,经重新总结发现,上一篇概况的有点浅显,适合初学js的入门了解,但对于已经学习js一段时间的人,或者是想系统的了解JS体系,接下来的文章可能会更有帮助. 该系 ...
- python 小程序,输错三次密码锁定账户
[root@sun ~]# cat 7.py #!/usr/bin/python # -*- coding=UTF-8 -*- usera_name = 'usera' usera_passwd = ...
- 〖C语言学习笔记 〗(二) 数据类型
前言 本文为c语言的学习笔记,很多只是留下来占位的 数据类型 助记:变量就是在内存中挖个坑并给这个坑命名,而数据类型就是挖内存的坑的尺寸 基础类型 整数类型: short int int long i ...
- TCP/IP详解 卷1 第十九章 TCP的交互数据流
19.1 引言 成块数据:比如ftp.电子邮件.Usenet新闻 交互数据:Telnet.Rlogin 成块数据的报文段基本上都是满长度(full-size)的,而交互数据小的多(Telnet和Rlo ...
- 20155330 2016-2017-2 《Java程序设计》第六周学习总结
20155330 2016-2017-2 <Java程序设计>第六周学习总结 教材学习内容总结 学习目标 理解流与IO 理解InputStream/OutPutStream的继承架构 理解 ...
- Pytorch中的squeeze()和unsqueeze()函数
在numpy库中,经常会出现“秩为1的一维数组”(come from 吴恩达的深度学习,目前还没有搞清楚numpy中如此设计的意图).比如: 注意这里的a的shape是[3] ,既不是 [1,3] 也 ...
- strstr函数字符串匹配问题
题目链接:http://acm.sdut.edu.cn/onlinejudge2/index.php/Home/Index/problemdetail/pid/2772.html AC代码: #inc ...
- ubuntu14.04 提示 卷 文件系统根目录 仅剩余xxx的硬盘空间
- TypeError: 'range' object does not support item assignment
TypeError: 'range' object does not support item assignment I was looking at some python 2.x code and ...