#基于用户的推荐类算法
from math import sqrt #计算两个person的欧几里德距离
def sim_distance(prefs,person1,person2):
si = {}
for item in prefs(person1):
if item in prefs(person2):
si[item] = 1
if len(si) == 0:
return 0
sum_of_squares = sum([pow(prefs[person1][item]-prefs[person2][item],2) for item in prefs[person1] if item in prefs[person2]])
return 1/(1+sqrt(sum_of_squares))
#计算两个person 的皮尔逊相关系数
def sim_person(prefs,p1,p2,n=5):#n指的时电影评分满分是5
si = {}
for item in prefs[p1]:
if item in prefs[p2]:
return 1
sum1 = sum([prefs[p1][it] for it in si])
sum2 = sum([prefs[p2][it] for it in si]) sum1Sq = sum([pow(prefs[p1][it],2) for it in si])
sum2Sq = sum([pow(prefs[p2][it],2) for it in si]) pSum = sum([prefs[p1][it]*prefs[p2][it],2] for it in si) num = pSum - (sum1*sum2/n)
den = sqrt((sum1Sq-pow(sum1,2)/n)*(sum2Sq-pow(sum2,2)/n)) if den == 0:
return 0
r = num/den
return r
#返回跟输入person的相似排名结果
def topMatches(prefs,person,n=5,similarity = sim_person):
scores = [(similarity(prefs,person,other,n),other) for other in prefs if other != person]
scores.sort()
scores.reverse()
return scores[0:n]
#针对person进行推荐
def getRecommenddation(prefs,person,similarity = sim_person):
totals = {}
simSums = {}
for other in prefs:
if other == person:
continue
sim = similarity(prefs,person,other)
if sim < 0:
continue
for item in prefs[other]:
if item not in prefs[person] or prefs[person][item] == 0:
totals.setdefault(item,0)
totals[item] += prefs[other][item]*sim simSums.setdefault(item,0)
simSums[item] += sim
rankings = [(totals/simSums[item],item) for item,totals in totals.items()] rankings.sort()
rankings.reverse()
return rankings critics = {
'Jack':{'See You Again':4.5,'Try Everything':3.5,'Let it Go':5.0,'Sugar':3.5,'Sorry':2.5,'Baby':3.0},
'Michael':{'See You Again':2.5,'Try Everything':3.0,'Let it Go':3.0,'Sorry':3.5},
'Petter':{'See You Again':2.5,'Try Everything':3.5,'Let it Go':3.0,'Sugar':4.5,'Sorry':4.5,'Animals':2.0},
'Tom':{'See You Again':4.5,'Try Everything':4.0,'Let it Go':5.0},
}
#w为tom进行电影推荐
print(getRecommenddation(critics,"Tom"))

预测算法:基于UCF的电影推荐算法的更多相关文章

  1. 数据算法 --hadoop/spark数据处理技巧 --(9.基于内容的电影推荐 10. 使用马尔科夫模型的智能邮件营销)

    九.基于内容的电影推荐 在基于内容的推荐系统中,我们得到的关于内容的信息越多,算法就会越复杂(设计的变量更多),不过推荐也会更准确,更合理. 本次基于评分,提供一个3阶段的MR解决方案来实现电影推荐. ...

  2. 基于用户的协同过滤的电影推荐算法(tensorflow)

    数据集: https://grouplens.org/datasets/movielens/ ml-latest-small 协同过滤算法理论基础 https://blog.csdn.net/u012 ...

  3. (转) 基于MapReduce的ItemBase推荐算法的共现矩阵实现(一)

    转自:http://zengzhaozheng.blog.51cto.com/8219051/1557054 一.概述 这2个月为公司数据挖掘系统做一些根据用户标签情况对用户的相似度进行评估,其中涉及 ...

  4. 基于hadoop的电影推荐结果可视化

    数据可视化 1.数据的分析与统计 使用sql语句进行查询,获取所有数据的概述,包括电影数.电影类别数.人数.职业种类.点评数等. 2.构建数据可视化框架 这里使用了前端框架Bootstrap进行前端的 ...

  5. 简单的基于矩阵分解的推荐算法-PMF, NMF

    介绍: 推荐系统中最为主流与经典的技术之一是协同过滤技术(Collaborative Filtering),它是基于这样的假设:用户如果在过去对某些项目产生过兴趣,那么将来他很可能依然对其保持热忱.其 ...

  6. 电影推荐算法---HHR计划

    1,先看FM部分. 2,看看冷启动. 0,热门召回源. 1,男女召回源,年龄召回源,职业召回源,score最高. 2,男女年龄职业相互组合: 3,存入redis.天级别更新. 3,召回+排序先搞懂. ...

  7. Mahout推荐算法基础

    转载自(http://www.geek521.com/?p=1423) Mahout推荐算法分为以下几大类 GenericUserBasedRecommender 算法: 1.基于用户的相似度 2.相 ...

  8. 推荐算法——非负矩阵分解(NMF)

    一.矩阵分解回想 在博文推荐算法--基于矩阵分解的推荐算法中,提到了将用户-商品矩阵进行分解.从而实现对未打分项进行打分. 矩阵分解是指将一个矩阵分解成两个或者多个矩阵的乘积.对于上述的用户-商品矩阵 ...

  9. 美团网基于机器学习方法的POI品类推荐算法

    美团网基于机器学习方法的POI品类推荐算法 前言 在美团商家数据中心(MDC),有超过100w的已校准审核的POI数据(我们一般将商家标示为POI,POI基础信息包括:门店名称.品类.电话.地址.坐标 ...

随机推荐

  1. NIO教程 ——检视阅读

    NIO教程 --检视阅读 参考 BIO,NIO,AIO 总结 Java NIO浅析 Java NIO 教程--极客,蓝本 Java NIO 系列教程 --并发编程网 BIO,NIO--知乎 NIO 入 ...

  2. 《并发编程的艺术》阅读笔记之Lock与AQS

    Lock接口 在jdk1.5之后,并发包下新增了一个lock接口,lock接口定义了锁的获取,锁的释放,等方法,需要用户手动设置.与关键字不同的是,lock具有可操作性,比如,可以中断线程,设置超时时 ...

  3. python3如何不生成pyc文件

    使用-B参数 即 python3 -B test.py 设置环境变量 export PYTHONDONTWRITEBYTECODE=1 在导入的地方增加 import sys sys.dont_wri ...

  4. pytorch 文本情感分类和命名实体识别NER中LSTM输出的区别

    文本情感分类: 文本情感分类采用LSTM的最后一层输出 比如双层的LSTM,使用正向的最后一层和反向的最后一层进行拼接 def forward(self,input): ''' :param inpu ...

  5. 字符串的z型转换

    class Solution(object):     def convert(self, s, numRows):         if numRows==1:             return ...

  6. [Batch 脚本] 批量生成文件夹

    @echo off echo start set time=30000 echo %time% for /l %%i in (1,1, %time%) do ( echo %%i% md " ...

  7. docker容器介绍

                       Docker容器 一.什么是Docker? Docker时Docker.Lnc公司开源的一个基于LXC技术之上搭建的Container容器引擎,源代码托管在Git ...

  8. LVS DR模式实验

    LVS DR模式实验 三台虚拟机,两个台节点机(Apache),一台DR实验调度机 一:关闭相关安全机制 systemctl stop firewalld iptables -F setenforce ...

  9. node.js koa 实现长轮询

    长轮询的实现原理:浏览器发出请求之后,服务端资源如果没有就绪,那么并不立即返回,而是在一个时间范围内,不断地去查询资源是否就绪,如果就绪,就返回资源,如果超时了还没有就绪,就返回超时. 代码实现如下: ...

  10. Android Studio SVN配置忽略文件

    1.用Android Studio创建一个项目,会在根目录和Module目录下自动生成.gitignore文件,貌似是Git的配置文件,和SVN没有关系. 2.打开Setting-Version Co ...