第一题本应该是基础题,考察Cost Function不同形式的表示方法,但却难住了我,说明基本概念掌握不够到位。

1. 在求和的部分,有两种可能,一种是(i,j)同时求和,即∑(i,j):r(i,j)=1,另一种是∑j=1nu∑i:r(i,j)=1或者∑i=1nu∑j:r(i,j)=1都可以。

2. 后面的部分,一是要注意括号的位置,如果是对K项Theta和X求和,必须是求和后的结果再减去y(i,j),而不要把y(i,j)也放入求和表达式中

3. 如果不是K项求和,说明使用向量的方法直接求Theta*X,那么此时Theta是转置的,上标有T符号存在

第二题是比较协同过滤和线性回归以及逻辑回归的不同使用场景

1. 选项A是想要得到一个书籍销售量与书籍评分之间的关系函数,这里使用线性回归最为恰当

2. 选项B我们得到有不同客户对款式和品牌的review信息,然后向顾客推荐,所以这里用协同过滤推荐很合适

3. 选项C是标准的协同过滤使用场景,我们有不同顾客对书的评分,然后给顾客推荐书籍

4. 选项D有一句很重要的关键句是and each client purchases at most 1 portrait. 所以不同用户对每幅作品的评分并没有重叠性,用协同过滤不能得到好的预测结果

第三题是说对于几个不同的评分系统能否对数据进行融合(三个系统的评分分数范围不同)

首先肯定是可以的,只是我们必须要先做特征放缩,再融合数据,否则直接融合会导致数据范围不同,影响推荐系统的表现

第四题是对协同过滤的考察

1. 选项A是说为了构建推荐系统,用户必须对训练集中所有的书籍进行评分。事实上如果有空缺的数据我们可以用均值填充

2. 选项B是说如果用户只对少部分产品打分,我们依然可以通过协同过滤构建一个推荐系统。是的,如上所说。只是性能可能不够好

3. 选项C是说我们需要使用梯度下降进行算法优化,不能使用高级算法,因为我们必须同时计算X和Theta。事实上,我们可以使用高级算法进行优化,也能做到同时        更新X和Theta

第五题是协同过滤算法实现的考察,因为我们只需要R(i,j) = 1的数据,所以若使用向量化方法实现需要进行预处理

1. 选项A是在求和计算结果前对矩阵和R做了点乘,所以R = 0的数据不会计入结果,可以√

2. 选项B先对矩阵A*B与R做点乘,在求和计算结果,也可以√

3. 选项C看似与A相同,但点乘改为普通矩阵乘法,就会导致结果错误,甚至两矩阵根本无法相乘

4. 选项D也是一样,将点乘改为普通乘法,不得行

还有一种写法也是可以的

总结:协同过滤适合于多特征,多用户(数据)的系统,当用户较少时,与线性回归效果大致相同,(当N= 1时,Jcost与线性回归完全相同),当特征较少时,协同过滤也不能较好的发挥它的效果

Coursera机器学习——Recommender System测验的更多相关文章

  1. Coursera, Machine Learning, Anomoly Detection & Recommender system

      Algorithm:     When to select Anonaly detection or Supervised learning? 总的来说guideline是如果positive e ...

  2. Coursera机器学习+deeplearning.ai+斯坦福CS231n

    日志 20170410 Coursera机器学习 2017.11.28 update deeplearning 台大的机器学习课程:台湾大学林轩田和李宏毅机器学习课程 Coursera机器学习 Wee ...

  3. 论文笔记: Deep Learning based Recommender System: A Survey and New Perspectives

    (聊两句,突然记起来以前一个学长说的看论文要能够把论文的亮点挖掘出来,合理的进行概括23333) 传统的推荐系统方法获取的user-item关系并不能获取其中非线性以及非平凡的信息,获取非线性以及非平 ...

  4. Content-Based Recommender System

    Content-Based Recommender System是基于产品(商品.网页)的内容.属性.关键字,以及目标用户的喜好.行为,这两部分数据来联合计算出,该为目标用户推荐其可能最感兴趣的产品. ...

  5. A cost-effective recommender system for taxi drivers

    一个针对出租车司机有效花费的推荐系统 摘要 GPS技术和新形式的城市地理学改变了手机服务的形式.比如说,丰富的出租车GPS轨迹使得出做租车领域有新方法.事实上,最近很多工作是在使用出租车GPS轨迹数据 ...

  6. 推荐系统(Recommender System)

    推荐系统(Recommender System) 案例 为用户推荐电影 数据展示 Bob Tom Alice Jack 动作成分 浪漫成分 Movie1 5 ? 0 3 ? ? Movie2 ? 0 ...

  7. 【RS】Deep Learning based Recommender System: A Survey and New Perspectives - 基于深度学习的推荐系统:调查与新视角

    [论文标题]Deep Learning based Recommender System: A Survey and New Perspectives ( ACM Computing Surveys  ...

  8. User-Based Collaborative Recommender System

    Collaborative Recommender System基于User给Item的打分表,认为相似度很高的用户,会对同一个item给出相似的分数,找出K个相似度最高的用户,集合他们的打分,来推算 ...

  9. Item-Based Collaborative Recommender System

    与User-Based Collaborative Recommender System认为‘类似的用户会对同一个item给出类似的打分’不同,Item-Based Collaborative Rec ...

随机推荐

  1. 吴裕雄 Bootstrap 前端框架开发——Bootstrap 字体图标(Glyphicons):glyphicon glyphicon-heart

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta name ...

  2. 【剑指Offer】面试题26. 树的子结构

    题目 输入两棵二叉树A和B,判断B是不是A的子结构.(约定空树不是任意一个树的子结构) B是A的子结构, 即 A中有出现和B相同的结构和节点值. 例如: 给定的树 A:      3     / \ ...

  3. scanf与正则表达式的搭配及应用

    scanf与正则表达式的搭配及应用 正则其实我也学的不咋地,只会一点皮毛,正则最大的作用就是当输入流是一个字符串,我们能在输入的时候就滤掉无用信息,省去后期提取数值的步骤. 正则的语法我怕误人子弟,嘿 ...

  4. Result Maps collection already contains value for com.xxx.x.dao.xxxMapper.Bas

    springboot启动时候,报错如下: Result Maps collection already contains value for com.xxx.xx.dao.xxxxxMapper.Ba ...

  5. 《方方格子》(WPS版) _v3.6.6.0

    <方方格子>(WPS版) 下载地址(b2a7) SHA1:35AE4D99B77613D9E2BAF912477DC74C5C2B8389 版本信息    发行版本 3.6.6.0    ...

  6. 学术Essay写作如何体现逻辑的应用

    作为一篇学术essay,逻辑要求是必不可少的.那么,学术essay如何写作才能体现逻辑呢?这就需要从语言逻辑和科学逻辑出发. 语言逻辑指的是三C原则:(1)complete(完整),(2)concis ...

  7. Mac修改用户名后程序配置和文件都找不到了?

    小编今天手残,修改mac 的用户名,幸亏文件没丢失,要不然配置程序估计至少要花费周末的两天时间了.. 所幸的是,各种Google,终于找回了原用户名下的所有配置. 接下来,讲讲小编如何入坑又如何脱坑的 ...

  8. RPC——看这一篇就…显然不够

    引言 RPC blablabla…… RPC 知识点 扩展 有给老婆解释的如:https://www.jianshu.com/p/2accc2840a1b

  9. oracle函数创建与调用

    函数的定义: CREATE OR REPLACE FUNCTION FUNCTION_TEST(PARAMER1 IN VARCHAR, -- 参数的类型不写长度 PARAMER2 OUT VARCH ...

  10. HDU 1576:A/B

    A/B Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...