超越Mask-RCNN:谷歌大脑的AI,自己写了个目标检测AI
这是一只AI生出的小AI。
谷歌大脑的Quoc Le团队,用神经网络架构搜索 (NAS) ,发现了一个目标检测模型。长这样:
△ 看不清请把手机横过来
它的准确率和速度都超过了大前辈Mask-RCNN;也超过了另外两只行业精英:FPN和SSD。
模型叫做NAS-FPN。大佬Quoc Le说,它的长相完全在想象之外,十分前卫:
△ 喜讯发布一日,已收获600颗心
AI的脑洞果然和人类不一样。对比一下,目标检测界的传统方法FPN (特征金字塔网络) 长这样:
谷歌大脑说,虽然网络架构搜索 (NAS) 并不算新颖,但他们用的搜索空间与众不同。
怎么搜出来?
在NAS-FPN出现之前,地球上最强大的目标检测模型,架构都是人类手动设计的。
△ 这是Mask-RCNN的成果
NAS是一种自动调参的方法,调的不是训练超参数,是网络架构超参数:比如网络多少层、每层都是什么算子、卷积层里的过滤器大小等等。
它可以在许多许多不同的架构里,快速找到性能最好的那一个。
所以,要把目标检测的常用架构FPN (特征金字塔网络) 和NAS结合起来,发现那只最厉害的AI。
但问题是搜索空间太大,特征横跨许多不同的尺度。
于是,团队基于RetinaNet框架,设计了一个新的搜索空间:
这里,一个FPN是由许多的“合并单元 (Merging Cells) ”组成的。
是要把输入的不同尺度/分辨率的特征层,合并到RetinaNet的表征里去。
具体怎样合并?这是由一个RNN控制器来决定的,经过四个步骤:
一是,从输入里任选一个特征层;
二是,从输入里再选一个特征层;
三是,选择输出的特征分辨率;
四是,选择一种二进制运算,把两个特征层 (用上一步选定的分辨率) 合并起来。
第四步有两种运算可选,一种是加和 (sum) ,一种是全局池化 (Global Pooling) 。两个都是简单、高效的运算,不会附加任何带训练的参数。
一个Cell就这样合并出来了,但这只是中间结果。把它加到刚才的输入列表里,和其他特征层排在一起。
然后,就可以重新选两个特征层,重复上面的步骤一、二、四,保持分辨率不变。
和4是比较合适的步长。)
就这样,不停地生成新的Cell。
停止搜索的时候,最后生成的5个Cell,会组成“被选中的FPN”出道。
那么问题来了,搜索什么时候能停?
不是非要全部搜索完,随时都可以退出。反正分辨率是不变的,FPN是可以随意扩展的。
团队设定了Early Exit (提前退出) 机制,用来权衡速度和准确率。
最终发布NAS-FPN的,是AI跑了8,000步之后,选取最末5个Cell生成的网络。回顾一下:
△ 看不清请把手机横过来
从原始FPN (下图a) 开始,它走过的路大概是这样的:
跑得越久,生成的网络就越蜿蜒。
模型怎么样?
NAS-FPN可以依托于各种骨架:MobileNet,ResNet,AmoebaNet……
团队选择的是AmoebaNet骨架。
那么,用COCO test-dev数据集,和那些强大的前辈比一比高清大图检测效果。
比赛结果发布:
△ 看不清请把手机横过来
NAS-FPN拿到了48.3的AP分,超过了Mask-RCNN,并且用时更短 (右边第二列是时间) 。
另外一场比赛,是移动检测 (320x320) ,NAS-FPN的轻量版本,跑在MobileNet2骨架上:
超过了厉害的前辈SSD轻量版,虽然,还是没有赶上YOLOv3。
△ YOLOv3过往成果展
不过,打败Mask-RCNN已经是值得庆祝的成就了。
One More Thing
NAS既然如此高能,应该已经搜索过很多东西了吧?
谷歌大脑的另一位成员David Ha列出了7种:
1) 基于CNN的图像分类器,2) RNN,3) 激活函数,4) SGD优化器,5) 数据扩增,6) Transformer,7) 目标检测。
并发射了直击灵魂的提问:下一个被搜的会是什么?
他的同事摘得了最佳答案:NAS啊。
△ NAS
论文传送门:
https://arxiv.org/pdf/1904.07392.pdf
作者系网易新闻·网易号“各有态度”签约作者
— 完 —
欢迎关注磐创博客资源汇总站:http://docs.panchuang.net/
欢迎关注PyTorch官方中文教程站:http://pytorch.panchuang.net/
超越Mask-RCNN:谷歌大脑的AI,自己写了个目标检测AI的更多相关文章
- AI佳作解读系列(二)——目标检测AI算法集杂谈:R-CNN,faster R-CNN,yolo,SSD,yoloV2,yoloV3
1 引言 深度学习目前已经应用到了各个领域,应用场景大体分为三类:物体识别,目标检测,自然语言处理.本文着重与分析目标检测领域的深度学习方法,对其中的经典模型框架进行深入分析. 目标检测可以理解为是物 ...
- 谷歌大脑提出:基于NAS的目标检测模型NAS-FPN,超越Mask R-CNN
谷歌大脑提出:基于NAS的目标检测模型NAS-FPN,超越Mask R-CNN 朱晓霞发表于目标检测和深度学习订阅 235 广告关闭 11.11 智慧上云 云服务器企业新用户优先购,享双11同等价格 ...
- CVPR2019 | 超越Mask R-CNN!华科开源图像实例分割新方法MS R-CNN
安妮 乾明 发自 凹非寺 本文转载自量子位(QbitAI) 实习生又立功了! 这一次,亮出好成绩的实习生来自地平线,是一名华中科技大学的硕士生. 他作为第一作者完成的研究Mask Scoring R- ...
- deeplearning.ai 卷积神经网络 Week 3 目标检测 听课笔记
本周的主题是对象检测(object detection):不但需要检测出物体(image classification),还要能定位出在图片的具体位置(classification with loca ...
- deeplearning.ai 卷积神经网络 Week 3 目标检测
本周的主题是对象检测(object detection):不但需要检测出物体(image classification),还要能定位出在图片的具体位置(classification with loca ...
- Google AI推出新的大规模目标检测挑战赛
来源 | Towards Data Science 整理 | 磐石 就在几天前,Google AI在Kaggle上推出了一项名为Open Images Challenge的大规模目标检测竞赛.当今计算 ...
- CVPR目标检测与实例分割算法解析:FCOS(2019),Mask R-CNN(2019),PolarMask(2020)
CVPR目标检测与实例分割算法解析:FCOS(2019),Mask R-CNN(2019),PolarMask(2020)1. 目标检测:FCOS(CVPR 2019)目标检测算法FCOS(FCOS: ...
- AI R-CNN目标检测算法
Region-CNN,简称R-CNN,是首次将深度学习应用于目标检测的算法. bounding box IOU 非极大值抑制 selective search 参考链接: https://blog.c ...
- 深度学习与CV教程(12) | 目标检测 (两阶段,R-CNN系列)
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-det ...
随机推荐
- linux学习--2.文件管理的基本命令
文件的基本操作 前言: 看完这篇图文我应该能保证读者在Linux系统下对文件的操作能跟用Windows环境下一样流畅吧,好了下面正文 正文: 基础知识: linux里共有以下几类文件,分别为目录(di ...
- 热更新,App双开,App隐藏,App试用 -- Replugin的实际应用(原创)
热更新,App双开,App隐藏,App试用 -- Replugin的实际应用(原创) RePlugin是Qihoo 360公司的开源框架,原本目的是用于热更新.但是,这个框架提供的功能远远超出了热更新 ...
- Java入门教程二(语言基础)
常量与变量 常量值又称为字面常量,它是通过数据直接表示 常量 实型常量值 Java 的实型常量值主要有如下两种形式 十进制数形式:由数字和小数点组成,且必须有小数点,如 12.34.-98.0 科学记 ...
- pycharm 关于模块安装出现的“[error] Microsoft Visual C++ 14.0 is required” 解决办法
刚才正准备对pycharm进行一番操作的时候,噔 噔磴噔噔 “no module define xxx” ,那我当然要把xxx给搞到pycharm上来啊, 不一会功夫 ,biu~ “[error] ...
- unittest实战(四):用例编写
import yamlimport unittestfrom selenium import webdriverimport timefrom ddt import ddt, data, unpack ...
- meterpreter会话渗透利用常用的32个命令归纳小结
仅作渗透测试技术实验之用,请勿针对任何未授权网络和设备. 1.background命令 返回,把meterpreter后台挂起 2.session命令 session 命令可以查看已经成功获取的会话 ...
- Metaploit-永恒之蓝漏洞利用
目录 Metaploit介绍 实验环境 漏洞利用过程 Metaploit介绍 本次测试主要是利用永恒之蓝漏洞对windows7进行控制利用,掌握Metaploit工具的使用,知道永恒之蓝的漏洞利用原理 ...
- koa01
1.koa简介 koa是express团队开发的一个更加轻量级的服务端开发框架,也是未来的趋势 2.安装 npm i -g koa-generator //全局安装koa脚手架 3.创建项目 koa2 ...
- [LeetCode] 1370. Increasing Decreasing String
1. 原题链接:https://leetcode.com/problems/increasing-decreasing-string/ 2. 解题思路 直观的想法是:用有序map<char, i ...
- 峰哥说技术:06-手撸Spring Boot自定义启动器,解密Spring Boot自动化配置原理
Spring Boot深度课程系列 峰哥说技术—2020庚子年重磅推出.战胜病毒.我们在行动 06 峰哥说技术:手撸Spring Boot自定义启动器,解密Spring Boot自动化配置原理 Sp ...