一、简介

Apache Flume 是一个分布式,高可用的数据收集系统,可以从不同的数据源收集数据,经过聚合后发送到分布式计算框架或者存储系统中。Spark Straming 提供了以下两种方式用于 Flume 的整合。

二、推送式方法

在推送式方法 (Flume-style Push-based Approach) 中,Spark Streaming 程序需要对某台服务器的某个端口进行监听,Flume 通过 avro Sink 将数据源源不断推送到该端口。这里以监听日志文件为例,具体整合方式如下:

2.1 配置日志收集Flume

新建配置 netcat-memory-avro.properties,使用 tail 命令监听文件内容变化,然后将新的文件内容通过 avro sink 发送到 hadoop001 这台服务器的 8888 端口:

#指定agent的sources,sinks,channels
a1.sources = s1
a1.sinks = k1
a1.channels = c1 #配置sources属性
a1.sources.s1.type = exec
a1.sources.s1.command = tail -F /tmp/log.txt
a1.sources.s1.shell = /bin/bash -c
a1.sources.s1.channels = c1 #配置sink
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = hadoop001
a1.sinks.k1.port = 8888
a1.sinks.k1.batch-size = 1
a1.sinks.k1.channel = c1 #配置channel类型
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

2.2 项目依赖

项目采用 Maven 工程进行构建,主要依赖为 spark-streamingspark-streaming-flume

<properties>
<scala.version>2.11</scala.version>
<spark.version>2.4.0</spark.version>
</properties> <dependencies>
<!-- Spark Streaming-->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_${scala.version}</artifactId>
<version>${spark.version}</version>
</dependency>
<!-- Spark Streaming 整合 Flume 依赖-->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-flume_${scala.version}</artifactId>
<version>2.4.3</version>
</dependency>
</dependencies>

2.3 Spark Streaming接收日志数据

调用 FlumeUtils 工具类的 createStream 方法,对 hadoop001 的 8888 端口进行监听,获取到流数据并进行打印:

import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.streaming.flume.FlumeUtils object PushBasedWordCount { def main(args: Array[String]): Unit = {
val sparkConf = new SparkConf()
val ssc = new StreamingContext(sparkConf, Seconds(5))
// 1.获取输入流
val flumeStream = FlumeUtils.createStream(ssc, "hadoop001", 8888)
// 2.打印输入流的数据
flumeStream.map(line => new String(line.event.getBody.array()).trim).print() ssc.start()
ssc.awaitTermination()
}
}

2.4 项目打包

因为 Spark 安装目录下是不含有 spark-streaming-flume 依赖包的,所以在提交到集群运行时候必须提供该依赖包,你可以在提交命令中使用 --jar 指定上传到服务器的该依赖包,或者使用 --packages org.apache.spark:spark-streaming-flume_2.12:2.4.3 指定依赖包的完整名称,这样程序在启动时会先去中央仓库进行下载。

这里我采用的是第三种方式:使用 maven-shade-plugin 插件进行 ALL IN ONE 打包,把所有依赖的 Jar 一并打入最终包中。需要注意的是 spark-streaming 包在 Spark 安装目录的 jars 目录中已经提供,所以不需要打入。插件配置如下:

<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<source>8</source>
<target>8</target>
</configuration>
</plugin>
<!--使用 shade 进行打包-->
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<configuration>
<createDependencyReducedPom>true</createDependencyReducedPom>
<filters>
<filter>
<artifact>*:*</artifact>
<excludes>
<exclude>META-INF/*.SF</exclude>
<exclude>META-INF/*.sf</exclude>
<exclude>META-INF/*.DSA</exclude>
<exclude>META-INF/*.dsa</exclude>
<exclude>META-INF/*.RSA</exclude>
<exclude>META-INF/*.rsa</exclude>
<exclude>META-INF/*.EC</exclude>
<exclude>META-INF/*.ec</exclude>
<exclude>META-INF/MSFTSIG.SF</exclude>
<exclude>META-INF/MSFTSIG.RSA</exclude>
</excludes>
</filter>
</filters>
<artifactSet>
<excludes>
<exclude>org.apache.spark:spark-streaming_${scala.version}</exclude>
<exclude>org.scala-lang:scala-library</exclude>
<exclude>org.apache.commons:commons-lang3</exclude>
</excludes>
</artifactSet>
</configuration>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<transformers>
<transformer
implementation="org.apache.maven.plugins.shade.resource.ServicesResourceTransformer"/>
<transformer
implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
</transformer>
</transformers>
</configuration>
</execution>
</executions>
</plugin>
<!--打包.scala 文件需要配置此插件-->
<plugin>
<groupId>org.scala-tools</groupId>
<artifactId>maven-scala-plugin</artifactId>
<version>2.15.1</version>
<executions>
<execution>
<id>scala-compile</id>
<goals>
<goal>compile</goal>
</goals>
<configuration>
<includes>
<include>**/*.scala</include>
</includes>
</configuration>
</execution>
<execution>
<id>scala-test-compile</id>
<goals>
<goal>testCompile</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>

本项目完整源码见:spark-streaming-flume

使用 mvn clean package 命令打包后会生产以下两个 Jar 包,提交 非 original 开头的 Jar 即可。

2.5 启动服务和提交作业

启动 Flume 服务:

flume-ng agent \
--conf conf \
--conf-file /usr/app/apache-flume-1.6.0-cdh5.15.2-bin/examples/netcat-memory-avro.properties \
--name a1 -Dflume.root.logger=INFO,console

提交 Spark Streaming 作业:

spark-submit \
--class com.heibaiying.flume.PushBasedWordCount \
--master local[4] \
/usr/appjar/spark-streaming-flume-1.0.jar

2.6 测试

这里使用 echo 命令模拟日志产生的场景,往日志文件中追加数据,然后查看程序的输出:

Spark Streaming 程序成功接收到数据并打印输出:

2.7 注意事项

1. 启动顺序

这里需要注意的,不论你先启动 Spark 程序还是 Flume 程序,由于两者的启动都需要一定的时间,此时先启动的程序会短暂地抛出端口拒绝连接的异常,此时不需要进行任何操作,等待两个程序都启动完成即可。

2. 版本一致

最好保证用于本地开发和编译的 Scala 版本和 Spark 的 Scala 版本一致,至少保证大版本一致,如都是 2.11

三、拉取式方法

拉取式方法 (Pull-based Approach using a Custom Sink) 是将数据推送到 SparkSink 接收器中,此时数据会保持缓冲状态,Spark Streaming 定时从接收器中拉取数据。这种方式是基于事务的,即只有在 Spark Streaming 接收和复制数据完成后,才会删除缓存的数据。与第一种方式相比,具有更强的可靠性和容错保证。整合步骤如下:

3.1 配置日志收集Flume

新建 Flume 配置文件 netcat-memory-sparkSink.properties,配置和上面基本一致,只是把 a1.sinks.k1.type 的属性修改为 org.apache.spark.streaming.flume.sink.SparkSink,即采用 Spark 接收器。

#指定agent的sources,sinks,channels
a1.sources = s1
a1.sinks = k1
a1.channels = c1 #配置sources属性
a1.sources.s1.type = exec
a1.sources.s1.command = tail -F /tmp/log.txt
a1.sources.s1.shell = /bin/bash -c
a1.sources.s1.channels = c1 #配置sink
a1.sinks.k1.type = org.apache.spark.streaming.flume.sink.SparkSink
a1.sinks.k1.hostname = hadoop001
a1.sinks.k1.port = 8888
a1.sinks.k1.batch-size = 1
a1.sinks.k1.channel = c1 #配置channel类型
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

2.2 新增依赖

使用拉取式方法需要额外添加以下两个依赖:

<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>2.12.8</version>
</dependency>
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-lang3</artifactId>
<version>3.5</version>
</dependency>

注意:添加这两个依赖只是为了本地测试,Spark 的安装目录下已经提供了这两个依赖,所以在最终打包时需要进行排除。

2.3 Spark Streaming接收日志数据

这里和上面推送式方法的代码基本相同,只是将调用方法改为 createPollingStream

import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.streaming.flume.FlumeUtils object PullBasedWordCount { def main(args: Array[String]): Unit = { val sparkConf = new SparkConf()
val ssc = new StreamingContext(sparkConf, Seconds(5))
// 1.获取输入流
val flumeStream = FlumeUtils.createPollingStream(ssc, "hadoop001", 8888)
// 2.打印输入流中的数据
flumeStream.map(line => new String(line.event.getBody.array()).trim).print()
ssc.start()
ssc.awaitTermination()
}
}

2.4 启动测试

启动和提交作业流程与上面相同,这里给出执行脚本,过程不再赘述。

启动 Flume 进行日志收集:

flume-ng agent \
--conf conf \
--conf-file /usr/app/apache-flume-1.6.0-cdh5.15.2-bin/examples/netcat-memory-sparkSink.properties \
--name a1 -Dflume.root.logger=INFO,console

提交 Spark Streaming 作业:

spark-submit \
--class com.heibaiying.flume.PullBasedWordCount \
--master local[4] \
/usr/appjar/spark-streaming-flume-1.0.jar

参考资料

系列传送门

入门大数据---Spark_Streaming整合Flume的更多相关文章

  1. 入门大数据---Spark_Streaming整合Kafka

    一.版本说明 Spark 针对 Kafka 的不同版本,提供了两套整合方案:spark-streaming-kafka-0-8 和 spark-streaming-kafka-0-10,其主要区别如下 ...

  2. 入门大数据---Spark_Streaming基本操作

    一.案例引入 这里先引入一个基本的案例来演示流的创建:获取指定端口上的数据并进行词频统计.项目依赖和代码实现如下: <dependency> <groupId>org.apac ...

  3. 入门大数据---Spark_Streaming与流处理

    一.流处理 1.1 静态数据处理 在流处理之前,数据通常存储在数据库,文件系统或其他形式的存储系统中.应用程序根据需要查询数据或计算数据.这就是传统的静态数据处理架构.Hadoop 采用 HDFS 进 ...

  4. 大数据系列之Flume+kafka 整合

    相关文章: 大数据系列之Kafka安装 大数据系列之Flume--几种不同的Sources 大数据系列之Flume+HDFS 关于Flume 的 一些核心概念: 组件名称     功能介绍 Agent ...

  5. 入门大数据---Flume整合Kafka

    一.背景 先说一下,为什么要使用 Flume + Kafka? 以实时流处理项目为例,由于采集的数据量可能存在峰值和峰谷,假设是一个电商项目,那么峰值通常出现在秒杀时,这时如果直接将 Flume 聚合 ...

  6. 大数据技术之Flume

    第1章 概述 1.1 Flume定义 Flume是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集.聚合和传输的系统.Flume基于流式架构,灵活简单. 1.2 Flume组成架构 ...

  7. 入门大数据---Flink学习总括

    第一节 初识 Flink 在数据激增的时代,催生出了一批计算框架.最早期比较流行的有MapReduce,然后有Spark,直到现在越来越多的公司采用Flink处理.Flink相对前两个框架真正做到了高 ...

  8. 低调、奢华、有内涵的敏捷式大数据方案:Flume+Cassandra+Presto+SpagoBI

    基于FacebookPresto+Cassandra的敏捷式大数据 文件夹 1 1.1 1.1.1 1.1.2 1.2 1.2.1 1.2.2 2 2.1 2.2 2.3 2.4 2.5 2.6 3 ...

  9. 入门大数据---SparkSQL外部数据源

    一.简介 1.1 多数据源支持 Spark 支持以下六个核心数据源,同时 Spark 社区还提供了多达上百种数据源的读取方式,能够满足绝大部分使用场景. CSV JSON Parquet ORC JD ...

随机推荐

  1. Cypress系列(6)- Cypress 的重试机制

    如果想从头学起Cypress,可以看下面的系列文章哦 https://www.cnblogs.com/poloyy/category/1768839.html 前言 重试(Retry-ability) ...

  2. 使用VUE开发用户后台时的动态路由问题、按钮权限问题以及其他页面处理问题

    如今前后端分离是大势所趋,笔者虽然是做后台的,但也不得不学学前端的流行框架VUE -_-||| . 为了学习VUE,笔者搭建了一个简单的用户后台,以此来了解VUE的开发思路(注:本项目不用于实际开发, ...

  3. 看板 | 漫话之减少WIP(在制品)

    传统的流水线生产模式中,生产流程按生产程序进行划分,而各部分因动作的难度或复杂程度的差异导致用时不同. 例如:一个产品进行组装用时2分钟,完成装箱工作只需10秒.在这种情况下,组装动作用时长.产出慢, ...

  4. URL与URI的联系与区别

    作者:daixinye链接:https://www.zhihu.com/question/21950864/answer/154309494来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商 ...

  5. Java实现 LeetCode 565 数组嵌套(没有重复值的数组)

    565. 数组嵌套 索引从0开始长度为N的数组A,包含0到N - 1的所有整数.找到并返回最大的集合S,S[i] = {A[i], A[A[i]], A[A[A[i]]], - }且遵守以下的规则. ...

  6. Java实现桐桐的数学难题

    桐桐的数学难题 题目描述 今天数学课上,桐桐学习了质数的知识:一个正整数如果只能被1和它本身整除,那么这个整数便是质数.桐桐就想:任意一个正整数是否都能分解成若干个质数相乘的形式呢?输入一个正整数n( ...

  7. 第五届蓝桥杯C++B组国(决)赛真题

    解题代码部分来自网友,如果有不对的地方,欢迎各位大佬评论 题目1.年龄巧合 小明和他的表弟一起去看电影,有人问他们的年龄.小明说:今年是我们的幸运年啊.我出生年份的四位数字加起来刚好是我的年龄.表弟的 ...

  8. Linux vi使用技巧

    导入命令执行结果:r !命令,例如:导入已经存在的文件内容到当前文件 导入命令执行的结果到当前文件 定义快捷键,map 快捷键 触发命令,例如:map ^P I#<ESC>(使用CRTL+ ...

  9. 阿里云杨敬宇:边缘计算行业通识与阿里云ENS的技术演进之路

    近日,阿里云杨敬宇在CSDN阿里云核心技术竞争力在线峰会上进行了<5G基础设施-阿里云边缘计算的技术演进之路>主题演讲,针对5G时代下,行业和技术的趋势.边缘计算产业通识以及阿里云边缘计算 ...

  10. 涨见识了,在终端执行 Python 代码的 6 种方式!

    原作:BRETT CANNON 译者:豌豆花下猫@Python猫 英文:https://snarky.ca/the-many-ways-to-pass-code-to-python-from-the- ...