B. Mr. Kitayuta's Colorful Graph
 time limit per test

1 second

Mr. Kitayuta has just bought an undirected graph consisting of n vertices and m edges. The vertices of the graph are numbered from 1 to n. Each edge, namely edge i, has a color ci, connecting vertex ai and bi.

Mr. Kitayuta wants you to process the following q queries.

In the i-th query, he gives you two integers — ui and vi.

Find the number of the colors that satisfy the following condition: the edges of that color connect vertex ui and vertex vi directly or indirectly.

Input

The first line of the input contains space-separated two integers — n and m (2 ≤ n ≤ 100, 1 ≤ m ≤ 100), denoting the number of the vertices and the number of the edges, respectively.

The next m lines contain space-separated three integers — ai, bi (1 ≤ ai < bi ≤ n) and ci (1 ≤ ci ≤ m). Note that there can be multiple edges between two vertices. However, there are no multiple edges of the same color between two vertices, that is, if i ≠ j, (ai, bi, ci) ≠ (aj, bj, cj).

The next line contains a integer — q (1 ≤ q ≤ 100), denoting the number of the queries.

Then follows q lines, containing space-separated two integers — ui and vi (1 ≤ ui, vi ≤ n). It is guaranteed that ui ≠ vi.

Output

For each query, print the answer in a separate line.

Sample test(s)
Input
4 5
1 2 1
1 2 2
2 3 1
2 3 3
2 4 3
3
1 2
3 4
1 4
Output
2
1
0
Input
5 7
1 5 1
2 5 1
3 5 1
4 5 1
1 2 2
2 3 2
3 4 2
5
1 5
5 1
2 5
1 5
1 4
Output
1
1
1
1
2
Note

Let's consider the first sample.

The figure above shows the first sample.

  • Vertex 1 and vertex 2 are connected by color 1 and 2.
  • Vertex 3 and vertex 4 are connected by color 3.
  • Vertex 1 and vertex 4 are not connected by any single color.
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <string>
#include <vector>
using namespace std;
const double EXP=1e-;
const double PI=acos(-1.0);
const int INF=0x7fffffff;
const int MS=; int fa[MS][MS];
void init()
{
for(int i=;i<MS;i++)
for(int j=;j<MS;j++)
fa[i][j]=j;
}
int find(int c,int a)
{
if(fa[c][a]==a)
return a;
return fa[c][a]=find(c,fa[c][a]);
}
void make_union(int c,int a,int b)
{
a=find(c,a);
b=find(c,b);
if(a==b)
return ;
fa[c][b]=fa[c][a];
}
int main()
{
int n,m,q,a,b,c;
init();
cin>>n>>m;
for(int i=;i<m;i++)
{
cin>>a>>b>>c;
make_union(c,a,b);
}
cin>>q;
while(q--)
{
int ans=;
cin>>a>>b;
for(c=;c<=m;c++)
if(find(c,a)==find(c,b))
ans++;
cout<<ans<<endl;
}
return ;
}

B. Mr. Kitayuta's Colorful Graph的更多相关文章

  1. CodeForces 505B Mr. Kitayuta's Colorful Graph

    Mr. Kitayuta's Colorful Graph Time Limit:1000MS     Memory Limit:262144KB     64bit IO Format:%I64d ...

  2. Codeforces Round #286 (Div. 2) B. Mr. Kitayuta's Colorful Graph dfs

    B. Mr. Kitayuta's Colorful Graph time limit per test 1 second memory limit per test 256 megabytes in ...

  3. Codeforces Round #286 (Div. 1) D. Mr. Kitayuta's Colorful Graph 并查集

    D. Mr. Kitayuta's Colorful Graph Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/ ...

  4. Mr. Kitayuta's Colorful Graph 多维并查集

    Mr. Kitayuta's Colorful Graph 并查集不仅可以用于一维,也可以用于高维. 此题的大意是10W个点10W条边(有多种颜色),10W个询问:任意两个节点之间可以由几条相同颜色的 ...

  5. codeforces 505B Mr. Kitayuta's Colorful Graph(水题)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Mr. Kitayuta's Colorful Graph Mr. Kitayut ...

  6. Codeforces Round #286 (Div. 1) D. Mr. Kitayuta's Colorful Graph

    D - Mr. Kitayuta's Colorful Graph 思路:我是暴力搞过去没有将答案离线,感觉将答案的离线的方法很巧妙.. 对于一个不大于sqrt(n) 的块,我们n^2暴力枚举, 对于 ...

  7. Codeforces 506D Mr. Kitayuta's Colorful Graph(分块 + 并查集)

    题目链接  Mr. Kitayuta's Colorful Graph 把每种颜色分开来考虑. 所有的颜色分为两种:涉及的点的个数 $> \sqrt{n}$    涉及的点的个数 $<= ...

  8. CodeForces - 505B Mr. Kitayuta's Colorful Graph 二维并查集

    Mr. Kitayuta's Colorful Graph Mr. Kitayuta has just bought an undirected graph consisting of n verti ...

  9. DFS/并查集 Codeforces Round #286 (Div. 2) B - Mr. Kitayuta's Colorful Graph

    题目传送门 /* 题意:两点之间有不同颜色的线连通,问两点间单一颜色连通的路径有几条 DFS:暴力每个颜色,以u走到v为结束标志,累加条数 注意:无向图 */ #include <cstdio& ...

随机推荐

  1. 当rsync遇到非默认端口的ssh

    在使用rsync使用ssh协议,来同步远程文件的方法,rsync -zvrtopg -e ssh但是如果遇到ssh不是22端口的时候使用rsync -zvrtopg -e ‘ssh -p 端口’特别是 ...

  2. java集合框架复习

    数组类Array是java中最基本的一个存储结构,它用于存储 一组连续的对象或一组类型相同的基本类型的数据. Array特点:效率高,但容量固定且无法动态改变, 缺点:无法判断其中存有多少元素,len ...

  3. Hellow world!

    其实一年前开始就有了些许开篇技术博客的想法,一直觉得写这些的人都一定好牛×.现刚毕业,我也是时候朝牛×之路迈进了.当然,我才刚入门不久,前路漫漫,需一步一脚印,先打算把平常遇到的一些问题与关注的东西都 ...

  4. mysql注册服务

    http://www.2cto.com/database/201301/185456.html ____________________________________________________ ...

  5. UVALive 7327 Digit Division (模拟)

    Digit Division 题目链接: http://acm.hust.edu.cn/vjudge/contest/127407#problem/D Description We are given ...

  6. codeforces 652B z-sort(思维)

    B. z-sort time limit per test 1 second memory limit per test 256 megabytes input standard input outp ...

  7. opencv 模板匹配与滑动窗口(单匹配) (多匹配)

    1单匹配: 测试图片:   code: #include <opencv\cv.h> #include <opencv\highgui.h> #include <open ...

  8. hadoop2.1.0和hadoop2.2.0编译安装教程

    由于现在hadoop2.0还处于beta版本,在apache官方网站上发布的beta版本中只有编译好的32bit可用,如果你直接下载安装在64bit的linux系统的机器上,运行会报一个INFO ut ...

  9. C#中反射的使用(How to use reflect in CSharp)(2)

    在上一篇里,我们叨逼了好多如何获取到程序集里的对象,但是对象有了,还不知道怎么调,OK,下面开始干这个对象: 首先,我们对上一篇的对象做了一些修改,以适应多种情况: using System; usi ...

  10. Oracle数据库如何授权收费(Database Licensing)

    Oracle软件本身是免费的,所以任何人都可以从Oracle官方网站下载并安装Oracle的数据库软件,收费的是License,即软件授权,如果数据库用于商业用途,就需要购买相应Oracle产品的Li ...