Overview

从Cocos2d-x 2.0.4开始,Cocos2d-x提出了自己的多分辨率支持方案,废弃了之前的retina相关设置接口,提出了design resolution概念。

3.0中有以下相关接口:

Director::getInstance()->getOpenGLView()->setDesignResolutionSize() //设计分辨率大小及模式
Director::getInstance()->setContentScaleFactor() //内容缩放因子
FileUtils::getInstance()->setSearchPaths() //资源搜索路径
Director::getInstance()->getOpenGLView()->getFrameSize() //屏幕分辨率
Director::getInstance()->getWinSize() //设计分辨率
Director::getInstance()->getVisibleSize() //设计分辨率可视区域大小
Director::getInstance()->getVisibleOrigin() //设计分辨率可视区域起点

从cocos2d-2.1beta3-x-2.1.1开始,

CCFileUtils::sharedFileUtils()->setResourceDirectory()

被新接口

FileUtils::getInstance()->setSearchPaths(searchPath)

替代

从Cocos2d-x 2.1.3开始,新加入了两种ResolutionPolicy(kResolutionFixedHeight, kResolutionFixedWidth),共5中模式。

官方分别在Multi_resolution_support 和 Mechanism_of_loading_resources有介绍。

本文从引擎使用者角度分析Cocos2d-x的多分辨率适配技术。

从Retina 到 design resolution

在Cocos2d-x 2.0.4之前,有Retina的概念,这个是从cocos2d-iphone过来的概念。

cocos2d-iphone为了支持Retina iphone 设备,使用了-hd等后缀来区分iphone和Retine iphone的图片资源。在设计游戏的时候,使用point 坐标系,而非真正的pixel坐标系。这点和iOS native应用开发提出的point概念一至,不用修改代码,就能在640×960的设备上跑之前320×480的程序,只是图片会看起来模糊,一旦加入@2x的图片,iOS自动加载@2x的图片,实现对Retna iphone的支持。

point坐标系,在一定范围内能解决多分辨率支持的问题。但是当iphone5,ipad 3出来以后,iOS总共有5个分辨率需要支持,如果做一个universal的程序,是相当痛苦的。point坐标系并不能完全解决问题,android上的分辨率情况更加复杂。

design resolution应该是从point坐标系进化过来的概念,目的是屏蔽设备分辨率,精灵坐标都在design resolution上布局,但要实现这个目标并不简单。Cocos2d-x提供了一组相关的接口和5种分辨率适配策略,哪种策略才是我们需要的,下面我们一同探寻。

资源分辨率,设计分辨率,屏幕分辨率

Resources width 以下简写为RW,Resources height 以下简写为RH

Design width 以下简写为DW,Design height 以下简写为DH

Screen width 以下简写为SW,Screen height 以下简写为SH

在SDK的samples中有个HelloCpp项目。展示了如何使用多分辨率方案。

以下以HelloCpp的AppMacros.h配置基本相同,但是交换了宽高的数值,以竖屏游戏为例子。

Cocos2d-x图片显示有下面两个逻辑过程。 资源布局到 到 设计分辨率,设计分辨率 布局到 屏幕。

如下图所示:

接口setContentScaleFactor()和setSearchPaths()控制着第一个转换过程。

而setDesignResolutionSize()控制第二个过程。两个过程结合在一起,影响最终的显示效果。

从资源分辨率到设计分辨率

setSearchPaths()需要根据当前屏幕分辨率做恰当的设置,HelloCpp展示了一套简单方案,但可能不是最佳的。

setContentScaleFactor()决定了图片显示到屏幕的缩放因子,但是这个接口的参数不是通过资源图片的宽、高比屏幕宽、高得来。Cocos2d-x引擎设计试图屏蔽游戏开发者直接去关注屏幕,所以这个因子是资源宽、高比设计分辨率宽、高。

setContentScaleFactor()通常有两个方式来设置参数。 RH/DH或RW/DW,不同的因子选择有不同的缩放负作用。 先看一张图:

用高度比作为内容缩放因子,保证了背景资源的垂直方向在设计分辨率范围内的全部显示。

用宽度比作为内容缩放因子,保证了背景资源的水平方向在设计分辨率范围内的全部显示。

从设计分辨率到屏幕分辨率

setDesignResolutionSize(DW, DH, resolutionPolicy)

有三个参数,设计分辨率宽,设计分辨率高,分辨率策略。

前两个很好理解,复杂点在分辨率策略的选择上。

先来看ResolutionPolicy::EXACT_FIT,ResolutionPolicy::NO_BORDER,ResolutionPolicy::SHOW_ALL这三种情况,2.1.3新加入的策略稍后分析。

三种策略的设计分辨率都是传入值,内部不做修正。

先看一张图:

ResolutionPolicy::SHOW_ALL

屏幕宽、高分别和设计分辨率宽、高计算缩放因子,取较(小)者作为宽、高的缩放因子。保证了设计区域全部显示到屏幕上,但可能会有黑边。

ResolutionPolicy::EXACT_FIT

屏幕宽 与 设计宽比 作为X方向的缩放因子,屏幕高 与 设计高比 作为Y方向的缩放因子。保证了设计区域完全铺满屏幕,但是可能会出现图像拉伸。

ResolutionPolicy::NO_BORDER

屏幕宽、高分别和设计分辨率宽、高计算缩放因子,取较(大)者作为宽、高的缩放因子。保证了设计区域总能一个方向上铺满屏幕,而另一个方向一般会超出屏幕区域。

ResolutionPolicy::NO_BORDER是之前官方推荐使用的方案,他没有拉伸图像,同时在一个方向上撑满了屏幕,但是2.1.3新加入的两种策略将撼动ResolutionPolicy::NO_BORDER的地位。

ResolutionPolicy::FIXED_HEIGHT和ResolutionPolicy::FIXED_WIDTH都是会在内部修正传入设计分辨率,以保证屏幕分辨率到设计分辨率无拉伸铺满屏幕。 如图:

ResolutionPolicy::FIXED_HEIGHT

保持传入的设计分辨率高度不变,根据屏幕分辨率修正设计分辨率的宽度。

ResolutionPolicy::FIXED_WIDTH

保持传入的设计分辨率宽度不变,根据屏幕分辨率修正设计分辨率的高度。

结合两个过程

第一过程有两种情况,第二过程有5种情况,在一个分辨率下会有10种可能的方案组合。 如何选择自己需要的?

我们需要作出选择,是牺牲效果还是牺牲部分显示区域。

这里我们选者牺牲一个方向的显示区域为例,结果说明两个过程。

在我的游戏里面,背景图的高需要全部显示,而宽方向可以裁减。

要实现这个目的,需要保证两个过程都是在宽方向裁减。

  • 第一过程选择 setContentScaleFactor(RH/DH)
  • 第二过程有两个选择:ResolutionPolicy::NO_BORDER和ResolutionPolicy::FIXED_HEIGHT

为了说明两者的区别,需要结合VisibleOrigin和VisibleSize。 看图

ResolutionPolicy::NO_BORDER情况下,设计分辨率并不是可见区域,我们布局精灵需要根据VisibleOrigin和VisibleSize来做判断处理。

而ResolutionPolicy::FIXED_HEIGHT则不同,设计分辨率就是可见区域,VisibleOrigin总是(0,0)

getVisibleSize() = getWinSize(),ResolutionPolicy::FIXED_HEIGHT达到了同样的目的,但是却简化了代码。

ResolutionPolicy::FIXED_HEIGHT和ResolutionPolicy::FIXED_WIDTH是ResolutionPolicy::NO_BORDER的进化,新项目中建议立即开始使用这两种方式。

小结

ResolutionPolicy::FIXED_HEIGHT

适合高方向需要撑满,宽方向可裁减的游戏,结合setContentScaleFactor(RH/DH)使用。

ResolutionPolicy::FIXED_WIDTH

适合宽方向需要撑满,高方向可裁减的游戏,结合setContentScaleFactor(RW/DW)使用。

tip:正确设置AppMacros.h里面的宽高,注意横屏游戏和竖屏游戏的不同。

(16)Cocos2d-x 多分辨率适配完全解析的更多相关文章

  1. Cocos2d-x 多分辨率适配完全解析

    从Cocos2d-x 2.0.4开始,Cocos2d-x提出了自己的多分辨率支持方案,废弃了之前的retina相关设置接口,提出了design resolution概念. 有以下相关接口: CCEGL ...

  2. 【Cocos2d-x 017】 多分辨率适配全然解析

    转:http://blog.csdn.net/w18767104183/article/details/22668739 文件夹从Cocos2d-x 2.0.4開始,Cocos2d-x提出了自己的多分 ...

  3. Unity3d + NGUI 的多分辨率适配

    一.当下移动设备的主流分辨率(数据来自“腾讯分析移动设备屏幕分辨率分析报告”) 1.1 iOS设备的分辨率主要有:   宽 高 宽高比 960 640 1.5 1136 640 1.775 1024 ...

  4. Unity3d + NGUI 的多分辨率适配(黑边)

    原地址:http://www.2cto.com/kf/201310/250921.html 一.当下移动设备的主流分辨率(数据来自“腾讯分析移动设备屏幕分辨率分析报告”) 1.1 iOS设备的分辨率主 ...

  5. 【转】Unity3d + NGUI 的多分辨率适配

    原文地址:http://www.cnblogs.com/cqgreen/p/3348154.html   一.当下移动设备的主流分辨率(数据来自“腾讯分析移动设备屏幕分辨率分析报告”) 1.1 iOS ...

  6. Cocos与Cocos2d-x协作教程——多分辨率适配

    http://www.cocoachina.com/bbs/read.php?tid-288123.html Cocos v2.1开始新增了一种新的多分辨率适配方案:流式布局. 这种布局相比Cocos ...

  7. Android多分辨率适配

    前一阶段开发android项目,由于客户要求进行多分辨率适配,能够支持国内主流的分辨率手机.因此经过了几次开发走了很多弯路,目前刚刚领略了android多分辨率适配的一些方法. 先介绍一下所走的弯路, ...

  8. Android多分辨率适配经验总结

      Android多分辨率适配是一件很有意义但是比较麻烦的事情,网上有很多关于多分辨率适配的文章,多数文章讲解的都是整个APP的图片比较规则,可以将图片做成9图来完成多分辨率适配,但是对于一些游戏类应 ...

  9. 【转】android多分辨率适配

    前一阶段开发android项目,由于客户要求进行多分辨率适配,能够支持国内主流的分辨率手机.因此经过了几次开发走了很多弯路,目前刚刚领略了android多分辨率适配的一些方法. 先介绍一下所走的弯路, ...

随机推荐

  1. docker pull 详解

    docker pull 用于从镜像仓库中拉取或更新指定镜像,用法如:docker pull centos ,默认是从 Docker Hub 中拉取镜像 在拉取镜像前,我们可以先配置 docker 加速 ...

  2. mqtt 服务器与客户端通讯

    mqtt 服务器与客户端通讯. 服务器端 ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 ...

  3. mongodb学习(二)

    昨天给ubuntu13.04安装ati的显卡驱动,ubuntu本来对ati的显卡支持不是很好,没办法unity启动器没有了,ccsm也没有任何作用,只得重新安装了12.10,近期也不打算升级13.04 ...

  4. chrom调试

    2.Event Listeners 可以看到事件找到对应在标签点开里有useCapture, passive: once: handler等等右键handler 的"show functio ...

  5. 【BZOJ1568】[JSOI2008]Blue Mary开公司 线段树

    [BZOJ1568][JSOI2008]Blue Mary开公司 Description Input 第一行 :一个整数N ,表示方案和询问的总数.  接下来N行,每行开头一个单词“Query”或“P ...

  6. 【BZOJ4515】[Sdoi2016]游戏 树链剖分+线段树

    [BZOJ4515][Sdoi2016]游戏 Description Alice 和 Bob 在玩一个游戏. 游戏在一棵有 n 个点的树上进行.最初,每个点上都只有一个数字,那个数字是 1234567 ...

  7. AVG

    AVG([ DISTINCT | ALL ] expr) [ OVER(analytic_clause) ] SELECT MANAGER_ID,           LAST_NAME,       ...

  8. 二进制状态压缩dp(旅行商TSP)POJ3311

    http://poj.org/problem?id=3311 Hie with the Pie Time Limit: 2000MS   Memory Limit: 65536K Total Subm ...

  9. rest_framework之规范详解 00

    接口开发 方式1:缺点:如果有10张表,则需要40个url. urls.py views.py 缺点:如果有10张表,则需要40个url.    接下来就出现了resrful 规范,比较简洁 方式2: ...

  10. 利用Linux系统生成随机密码的8种方法

    Linux操作系统的一大优点是对于同样一件事情,你可以使用高达数百种方法来实现它.例如,你可以通过数十种方法来生成随机密码.本文将介绍生成随机密码的十种方法. 1. 使用SHA算法来加密日期,并输出结 ...