Overview

从Cocos2d-x 2.0.4开始,Cocos2d-x提出了自己的多分辨率支持方案,废弃了之前的retina相关设置接口,提出了design resolution概念。

3.0中有以下相关接口:

Director::getInstance()->getOpenGLView()->setDesignResolutionSize() //设计分辨率大小及模式
Director::getInstance()->setContentScaleFactor() //内容缩放因子
FileUtils::getInstance()->setSearchPaths() //资源搜索路径
Director::getInstance()->getOpenGLView()->getFrameSize() //屏幕分辨率
Director::getInstance()->getWinSize() //设计分辨率
Director::getInstance()->getVisibleSize() //设计分辨率可视区域大小
Director::getInstance()->getVisibleOrigin() //设计分辨率可视区域起点

从cocos2d-2.1beta3-x-2.1.1开始,

CCFileUtils::sharedFileUtils()->setResourceDirectory()

被新接口

FileUtils::getInstance()->setSearchPaths(searchPath)

替代

从Cocos2d-x 2.1.3开始,新加入了两种ResolutionPolicy(kResolutionFixedHeight, kResolutionFixedWidth),共5中模式。

官方分别在Multi_resolution_support 和 Mechanism_of_loading_resources有介绍。

本文从引擎使用者角度分析Cocos2d-x的多分辨率适配技术。

从Retina 到 design resolution

在Cocos2d-x 2.0.4之前,有Retina的概念,这个是从cocos2d-iphone过来的概念。

cocos2d-iphone为了支持Retina iphone 设备,使用了-hd等后缀来区分iphone和Retine iphone的图片资源。在设计游戏的时候,使用point 坐标系,而非真正的pixel坐标系。这点和iOS native应用开发提出的point概念一至,不用修改代码,就能在640×960的设备上跑之前320×480的程序,只是图片会看起来模糊,一旦加入@2x的图片,iOS自动加载@2x的图片,实现对Retna iphone的支持。

point坐标系,在一定范围内能解决多分辨率支持的问题。但是当iphone5,ipad 3出来以后,iOS总共有5个分辨率需要支持,如果做一个universal的程序,是相当痛苦的。point坐标系并不能完全解决问题,android上的分辨率情况更加复杂。

design resolution应该是从point坐标系进化过来的概念,目的是屏蔽设备分辨率,精灵坐标都在design resolution上布局,但要实现这个目标并不简单。Cocos2d-x提供了一组相关的接口和5种分辨率适配策略,哪种策略才是我们需要的,下面我们一同探寻。

资源分辨率,设计分辨率,屏幕分辨率

Resources width 以下简写为RW,Resources height 以下简写为RH

Design width 以下简写为DW,Design height 以下简写为DH

Screen width 以下简写为SW,Screen height 以下简写为SH

在SDK的samples中有个HelloCpp项目。展示了如何使用多分辨率方案。

以下以HelloCpp的AppMacros.h配置基本相同,但是交换了宽高的数值,以竖屏游戏为例子。

Cocos2d-x图片显示有下面两个逻辑过程。 资源布局到 到 设计分辨率,设计分辨率 布局到 屏幕。

如下图所示:

接口setContentScaleFactor()和setSearchPaths()控制着第一个转换过程。

而setDesignResolutionSize()控制第二个过程。两个过程结合在一起,影响最终的显示效果。

从资源分辨率到设计分辨率

setSearchPaths()需要根据当前屏幕分辨率做恰当的设置,HelloCpp展示了一套简单方案,但可能不是最佳的。

setContentScaleFactor()决定了图片显示到屏幕的缩放因子,但是这个接口的参数不是通过资源图片的宽、高比屏幕宽、高得来。Cocos2d-x引擎设计试图屏蔽游戏开发者直接去关注屏幕,所以这个因子是资源宽、高比设计分辨率宽、高。

setContentScaleFactor()通常有两个方式来设置参数。 RH/DH或RW/DW,不同的因子选择有不同的缩放负作用。 先看一张图:

用高度比作为内容缩放因子,保证了背景资源的垂直方向在设计分辨率范围内的全部显示。

用宽度比作为内容缩放因子,保证了背景资源的水平方向在设计分辨率范围内的全部显示。

从设计分辨率到屏幕分辨率

setDesignResolutionSize(DW, DH, resolutionPolicy)

有三个参数,设计分辨率宽,设计分辨率高,分辨率策略。

前两个很好理解,复杂点在分辨率策略的选择上。

先来看ResolutionPolicy::EXACT_FIT,ResolutionPolicy::NO_BORDER,ResolutionPolicy::SHOW_ALL这三种情况,2.1.3新加入的策略稍后分析。

三种策略的设计分辨率都是传入值,内部不做修正。

先看一张图:

ResolutionPolicy::SHOW_ALL

屏幕宽、高分别和设计分辨率宽、高计算缩放因子,取较(小)者作为宽、高的缩放因子。保证了设计区域全部显示到屏幕上,但可能会有黑边。

ResolutionPolicy::EXACT_FIT

屏幕宽 与 设计宽比 作为X方向的缩放因子,屏幕高 与 设计高比 作为Y方向的缩放因子。保证了设计区域完全铺满屏幕,但是可能会出现图像拉伸。

ResolutionPolicy::NO_BORDER

屏幕宽、高分别和设计分辨率宽、高计算缩放因子,取较(大)者作为宽、高的缩放因子。保证了设计区域总能一个方向上铺满屏幕,而另一个方向一般会超出屏幕区域。

ResolutionPolicy::NO_BORDER是之前官方推荐使用的方案,他没有拉伸图像,同时在一个方向上撑满了屏幕,但是2.1.3新加入的两种策略将撼动ResolutionPolicy::NO_BORDER的地位。

ResolutionPolicy::FIXED_HEIGHT和ResolutionPolicy::FIXED_WIDTH都是会在内部修正传入设计分辨率,以保证屏幕分辨率到设计分辨率无拉伸铺满屏幕。 如图:

ResolutionPolicy::FIXED_HEIGHT

保持传入的设计分辨率高度不变,根据屏幕分辨率修正设计分辨率的宽度。

ResolutionPolicy::FIXED_WIDTH

保持传入的设计分辨率宽度不变,根据屏幕分辨率修正设计分辨率的高度。

结合两个过程

第一过程有两种情况,第二过程有5种情况,在一个分辨率下会有10种可能的方案组合。 如何选择自己需要的?

我们需要作出选择,是牺牲效果还是牺牲部分显示区域。

这里我们选者牺牲一个方向的显示区域为例,结果说明两个过程。

在我的游戏里面,背景图的高需要全部显示,而宽方向可以裁减。

要实现这个目的,需要保证两个过程都是在宽方向裁减。

  • 第一过程选择 setContentScaleFactor(RH/DH)
  • 第二过程有两个选择:ResolutionPolicy::NO_BORDER和ResolutionPolicy::FIXED_HEIGHT

为了说明两者的区别,需要结合VisibleOrigin和VisibleSize。 看图

ResolutionPolicy::NO_BORDER情况下,设计分辨率并不是可见区域,我们布局精灵需要根据VisibleOrigin和VisibleSize来做判断处理。

而ResolutionPolicy::FIXED_HEIGHT则不同,设计分辨率就是可见区域,VisibleOrigin总是(0,0)

getVisibleSize() = getWinSize(),ResolutionPolicy::FIXED_HEIGHT达到了同样的目的,但是却简化了代码。

ResolutionPolicy::FIXED_HEIGHT和ResolutionPolicy::FIXED_WIDTH是ResolutionPolicy::NO_BORDER的进化,新项目中建议立即开始使用这两种方式。

小结

ResolutionPolicy::FIXED_HEIGHT

适合高方向需要撑满,宽方向可裁减的游戏,结合setContentScaleFactor(RH/DH)使用。

ResolutionPolicy::FIXED_WIDTH

适合宽方向需要撑满,高方向可裁减的游戏,结合setContentScaleFactor(RW/DW)使用。

tip:正确设置AppMacros.h里面的宽高,注意横屏游戏和竖屏游戏的不同。

(16)Cocos2d-x 多分辨率适配完全解析的更多相关文章

  1. Cocos2d-x 多分辨率适配完全解析

    从Cocos2d-x 2.0.4开始,Cocos2d-x提出了自己的多分辨率支持方案,废弃了之前的retina相关设置接口,提出了design resolution概念. 有以下相关接口: CCEGL ...

  2. 【Cocos2d-x 017】 多分辨率适配全然解析

    转:http://blog.csdn.net/w18767104183/article/details/22668739 文件夹从Cocos2d-x 2.0.4開始,Cocos2d-x提出了自己的多分 ...

  3. Unity3d + NGUI 的多分辨率适配

    一.当下移动设备的主流分辨率(数据来自“腾讯分析移动设备屏幕分辨率分析报告”) 1.1 iOS设备的分辨率主要有:   宽 高 宽高比 960 640 1.5 1136 640 1.775 1024 ...

  4. Unity3d + NGUI 的多分辨率适配(黑边)

    原地址:http://www.2cto.com/kf/201310/250921.html 一.当下移动设备的主流分辨率(数据来自“腾讯分析移动设备屏幕分辨率分析报告”) 1.1 iOS设备的分辨率主 ...

  5. 【转】Unity3d + NGUI 的多分辨率适配

    原文地址:http://www.cnblogs.com/cqgreen/p/3348154.html   一.当下移动设备的主流分辨率(数据来自“腾讯分析移动设备屏幕分辨率分析报告”) 1.1 iOS ...

  6. Cocos与Cocos2d-x协作教程——多分辨率适配

    http://www.cocoachina.com/bbs/read.php?tid-288123.html Cocos v2.1开始新增了一种新的多分辨率适配方案:流式布局. 这种布局相比Cocos ...

  7. Android多分辨率适配

    前一阶段开发android项目,由于客户要求进行多分辨率适配,能够支持国内主流的分辨率手机.因此经过了几次开发走了很多弯路,目前刚刚领略了android多分辨率适配的一些方法. 先介绍一下所走的弯路, ...

  8. Android多分辨率适配经验总结

      Android多分辨率适配是一件很有意义但是比较麻烦的事情,网上有很多关于多分辨率适配的文章,多数文章讲解的都是整个APP的图片比较规则,可以将图片做成9图来完成多分辨率适配,但是对于一些游戏类应 ...

  9. 【转】android多分辨率适配

    前一阶段开发android项目,由于客户要求进行多分辨率适配,能够支持国内主流的分辨率手机.因此经过了几次开发走了很多弯路,目前刚刚领略了android多分辨率适配的一些方法. 先介绍一下所走的弯路, ...

随机推荐

  1. swift - UISlider 的用法

    swift的UISlider的用法和oc基本没有区别 1.创建 class SecondViewController: UIViewController { var slider = UISlider ...

  2. python中模块,包,库

    模块:就是.py文件,里面定义了一些函数和变量,需要的时候就可以导入这些模块. 包:在模块之上的概念,为了方便管理而将文件进行打包.包目录下第一个文件便是 __init__.py,然后是一些模块文件和 ...

  3. laravel 社会化(联合)登录扩展包(QQ、微信、微博等)

    laravel的官方包只支付国外网站的联合登录:http://laravelacademy.org/post/6288.html 国内用户的话,可以用这个:https://github.com/ove ...

  4. RIDE指定log和report的输出目录

    在命令行中,输入 pybot --help就可以看到他支持的所以命令和相关的介绍 我们可以看到outputdir这个命令,就是来知道report和log的输出目录的 如果你是在命令行中,那么直接后面跟 ...

  5. ARM、MCU、DSP、FPGA、SOC各是什么?区别是什么?(转)

    ARM ARM处理器是Acorn计算机有限公司面向低预算市场设计的第一款RISC微处理器.更早称作Acorn RISC Machine.ARM处理器本身是32位设计,但也配备16位指令集,一般来讲比等 ...

  6. JDBC连接oracle地址出错

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 3 ...

  7. linux文件锁flock【转】

    转自: https://www.cnblogs.com/kex1n/p/7100107.html linux文件锁flock   在多个进程同时操作同一份文件的过程中,很容易导致文件中的数据混乱,需要 ...

  8. java高级---->Thread之CountDownLatch的使用

    CountDownLatch是JDK 5+里面闭锁的一个实现,允许一个或者多个线程等待某个事件的发生.今天我们通过一些实例来学习一下它的用法. CountDownLatch的简单使用 CountDow ...

  9. activemq 实战三 了解连接器的URI-Understanding connector URIs

    Before discussing the details of connectors and their role in the overall ActiveMQ architecture, it’ ...

  10. MQTT的学习研究(四)moquette-mqtt 的使用之mqtt Blocking API客户端订阅并接收主题信息

    在上面两篇关于mqtt的broker的启动和mqtt的服务端发布主题信息之后,我们客户端需要订阅相关的信息并接收相关的主题信息. package com.etrip.mqtt; import java ...